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ABSTRACT

Methods of describing steady electricai conduction in a partially
ionized gas with Hall effect, strong applied or magnetically induced
electric fields, and a nonuniform electrical conductivity are proposed.
One of these methods is based on model conductivity distributions, and
the other is based on a nonequilibrium conductivity and incorporates
the electron energy and ionization equations. The occurrence of a non-
equilibrium conductivity leads to the development of an ionization in-
stability. 1t is shown that the steady equations with a nonequilibrium
conductivity are of mixed el liptic-hyperbolic type and that the condi-
tion for the uniform ellipticity of these equations is identical fo the
condition for the prevention of the ionization instability.

These methods are applied to filowing gases in two-dimensional lin-
ear magnetohydrodynamic channels with segmented electrode structures.
Detailed numerical solutions for current and potential are obtained. In
general, it is found that conductivity nonuniformities lead to a degra-
dation of performance as reflected in increased internal impedance of
the conducting gas and depressed Hall voltage. Theoretically obtained
distributions of current on electrodes in contact with a nonuniformiy

conducting gas are found to be in accord with experimental measurements.
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i+ INTRODUCTION

.1 Background

In recent years considerable effort has been devoted to the devel-
opment of closed cycle magnetohydrodynamic (MHD) generators utilizing a
noble gas as a working fluid with slight additions of an easily ionized
alkali metal vapor, such as potassium or cesium. Particuiar attention
has been given to the possible operation of MHD generators of this type,
such that nonequipartition of electron and gas ftemperatures occurs as a
result of Joulean heating of the electrons by the current flowing in the
gas.! Simple theoretical considerations indicate that the enhanced
electron temperature will result in a higher electron number density and
thus a conducting gas of lower interna! impedance than would exist if
the electrons were at the same temperature as the gas.’? These theo-
retical predictions have been experimentally verified for noble gas
plasmas described above, when an electric field is applied and there is
no magnetic field present.l»2,3,%

The conditions necessary for nonequipartition heating such that the
electrons gain large amounts of energy from the field and lose it inef-
fectively to the heavy particles in the gas require infrequent electron-
heavy particie collisions and large electric fields. |f the electric
field is to be magnetically induced by the motion of the plasma through
the magnetic field, then the induced electric field will be proportiona!
to the magnetic field strength. |f Ve denotes the electron-heavy par-
ticle collision frequency and B denotes the magnetic field intensity, a
condition for nonequipartition heating is that the parameter B/ve be
targe. The Hail parameter B is defined as the ratio of the electron



gyro frequency in a magnetic field fo ifs heavy particle collision fre-
quency and is given by B = eB/meve, where e/me is the electron charge

to mass ratio. |t can be seen, therefore, that the condition for the
occurrence of nonequipartition heating is fthat the Hall parameter B8 be
large. Thus, significant nonequipartition heating in an alkali metal
seeded noble gas MHD generator will invariably be accompanied by Hall
effects. Physically, the Hall effect refers to the conduction process
within a plasma in which an electric field in the presence of a magne-
tic field produces a component of current flow in the direction mutually
perpendicular to the electric and magnetic fields as well as a component
parallel to the electric field. The component of current which is per-
pendicular to the electric and magnetic fields is called the Hall cur-
rent.

To this date, the experimental duplication of the performance pre-
dicted by simple theory? with magnetically induced electric fieids has
not been obtained. Instead, the actual performance of experimental gen-
erators as reflected in measured values of the internal impedance has
been considerably below the performance predicted by the simple theo-
ries.5 Whereas the simple theoretical predictions of performance have
been based upon the existence of a uniform plasma with uniform proper-
ties, experiment indicates the presence of large fluctuations of the
electric current in time and space and concentrations of the current in
the conducting gas, particularly near electrodes.?

Nonuniformities in the electrically conducting fluid may arise from
a variety of causes. Electrode segmentation is required with strong
Hal | effects to prevent the flow of axial (Hall) current in the channel.

2




Since such segmentation cannot be infinitely fine, nonuniformities in
the potential and current exist in the vicinity of the electrode seg-
ments even if the electrical conductivity of the gas is uniform. Spa-
tial nonuniformities in the electrical conductivity may arise from in-
homogeneous mixing of ionizable species in the gas or from fluctuations
of the form discussed by Velikhov® and McCune?’8 The electrical conduc-
tivity may also exhibit nonuniformities if variable fluid properties ex-
ist near surfaces which are heated or cooled or where finite electrode
segments induce nonuniformities in the current distribution, which in
turn produce nonuniform Joulean heating of the electrons.

The results of experiment and the existence of several mechanisms
for the introduction of nonuniformities in a gas therefore suggest the
desirability of extending the simple theories predicting performance.
Such a development of theory fto include nonuniformities would provide
improved predictions of generator performance; in addition, the inclu-
sion of nonuniformity effects would aid in the understanding of mechan-
isms which might explain the performance results of experimental gener-
ators now available. In what follows, uniform conductivity work and the
limited amount of nonuniform conductivity work available are reviewed.

The scope of the present study is then presented.

.2 Review of Uniform Conductivity Work

When the electrical conductivity of the plasma in an MHD channel is
uniform, the governing steady-state electromagnetic and diffusion equa-
tions reduce to the Laplace equation for the electric potential or cur-
rent stream function within the gas.? The boundary conditions of inter-

3



est in finitely segmented electrode channels are mixed, however, since
electrodes and insulators exist adjacent to one another along the same
boundary. In addition, the vanishing of the normal component of the
current on an insulating boundary leads to a condition of the form

30 30
—_—— -
S fBr = 0

where ¢ is the electric potential and n and t are the coordinates normal
and tangential to the boundary, respectively. In the absence of the
Hall effect (8 = 0), the above condition reduces to a simple Neumann
condition on & on the insulating boundary. When Hall effects are pre-
sent, the condition is an oblique Neumann condition. Both the mixed and
oblique Neumann nature of the boundary conditions prohibit the solution
of the Laplace equation by the standard techniques.

The first significant solution to the finitely segmented MHD chan-
nel with uniform electrical conductivity was obtained in 961 by Hurwitz,
Sutton, and Kilb.? These investigators obtained solutions to the mixed
boundary value probiem using conformal transformations under the assump-
tion that in the center of the channel the axial component of the cur-
rent density was negligibly small. It was shown that the finite length
of the electrode segments increases the internal impedance of the chan-
nel relative to the case where the electrode segmentation is infinitely
fine. In addiTioﬁ, the axial voltage gradient which develops due fo the
Hal| effect is depressed below that obtained with infinitely fine seg-
mentation. A significant result of the work of Hurwitz, Sutfon, and
Kilb was the prediction of concentrations of current at the electrode

edges due to the Hall effect. These concentrations were found To become




more intense as the Hall parameter B was increased. The work of Hur-
witz, Sutton, and Kilb was immediately followed by a large number of
published solutions concerned with various kinds of electrode arrange-
ments and geometrical arrangements including fthe problem of end ef-
fects.19,11,12,13 conformal mapping methods were utitized in most of
these studies as a means of dealing with the mixed boundary conditions.
A slightly different approach to the end effect probiem was given by
Dzung!* who used a series solution technique.

An attempt was made to relax the assumption of a vanishing axial
current in the Hurwitz, Sutton, Kilb calculation by Schultz-Grunow and
Denzel.l3 These investigators, however, introduced additional approxi=-
mations concerned with the shape and location of the dividing current
line between electrode segments. Even with these slightly different
assumptions, the results of these calculations for a large range of
geometries were in substantial agreement with those of Hurwitz, Sutton,
and Kilb.

15 in exam-

A numerical relaxation technique was employed by Crown
ining the infinitely long segmented electrode channel which was the
problem originally posed by Hurwitz, Sutton, and Kilb. The assumption
of negligible axial current was relaxed by Crown and numerical results
were obtained in substantial agreement with Hurwitz, Sutfon, and Kilb.
Crown's work was confined to Hall parameters less than two because of
numerical instabilities which developed for larger Hall parameters.

Celinski and Fischerl® developed numerical solutions to the prob-
lem considered by Crown. By utilizing difference formulas for the

boundary conditions on the insulator which were numerically stable for
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large Hatl parameters, the difficulty encountered by Crown was circu -
vented. An extensive parameter study was completed by Celinski and
Fischer for Hall parameters as large as ten. |In general, the results
show increases in the internal impedance of the channel with finite
electrode segments and decreasing Hall potential. The effects of vari-
able electrode to insulator segment length ratios was also examined by
Celinski and Fischer. Such effects were aiso considered eariier by Wi-

talis.l?

Both studies showed that for uniform conductivity the minimum
internal impedance is obtained for electrode segments of the same ilength

as the insulator segments, when the Hall parameter is large.

t.3 Review of Nonuniform Conductivity Work

The first published examination of conductivity nonuniformities in

8 who considered the ef-

magnetohydrodynamic generators was that of Rosal
fects of conductivity nonuniformities confined to one space dimension.
Rosa showed that the impedance of the current carrying gas is markedly
increased by even slight nonuniformities if sfrong Hall effects are pre-
sent. In particular, Rosa considered the effects of random nonuniformi-
ties which might be due to inhomogeneous mixing of the ionizable species
in the gas.

The occurrence of a nonuniform conductivity due to Joulean heating
induced nonequipartition of electron and gas temperature with subse-
quent ionization in the high electron temperature regions was first ex-
amined by Kerrebrock.!9,20 Kerrebrock assumed that the effects of non-
uniform Joulean heating of the electrons resulting from the finite size

of electrode segments could be approximated by assuming that such non-
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uniformities generate a layer of high eiectrical conductivity over the

conductors, but that the resulting current is uniformly distributed over

[o 8

the conductor. This assumption circumvented the difficulty of the mixed
boundary value problem. By further assuming that the conductivity var-

ied only in the direction transverse to the electrodes in the form
(h=1)

where y is the distance from the electrode in the transverse direction,
Kerrebrock was able to develop series solutions fo the nonuniform con-
duction problem. The parameters oo and v in the conductivity expression
(I-1) were fixed by requiring that the conductivity distribution be such
that the electron energy equation be satisfied for the gas layer near
the electrodes. An important result of Kerrebrock's analysis was the
‘predic*ion of a "shorting" effect in which a layer of high conductivity
would be generated over the electrode segments, thereby destroying the
effect of the segmentation. This shorting effect led to the existence
of two modes of operation: one in which the segmentation was fine
enough Yo achieve large electron temperature elevation in the core, and
the other in which the coarse segmentation led to a shorting of the Hall
field and very little electron temperature rise in the core of the chan-
nel.

Sherman2! has analyzed the effect of an electrical conductivity o
dependent upon the local current density T in the gas of the form

0 = 0o * CITI

where g, and C are constants. The resulting nonlinear boundary value
problem for the finitely segmented electrode channel was solved by an
expansion technique for small C. Each inhomogeneous |inear problem in

5



the expansion was solved using numerical relaxation. Sherman's work was

restricted to small values of C and Hall parameters of the order unity

or less. The major result of this study was fthe calculation of decreases
in Hall potential which occurred due to the current dependent conductiv-

ity.

I.4 The Scope of the Present Study

In the present study an examination of a variety of mechanisms and
consequences of two dimensional nonuniformities in MHD channeis attrib-
utable To some of the causes discussed above will be undertaken. The
principalvTool for this study will be a numerical solution ftechnique for
solving the equations governing nonuniform electrical conduction.

tn chapter 2 a formulation of the equations governing electrica!
conduction with a nonuniform electrical conductivity and methods for
closing the system of equations are presented. One of these methods in-
froduces model conductivity distributions and the other considers a non-
uniform nonequilibrium conductivity which consistently incorporates the
effects of electron ionization and recombination and energy transfer to
the electron fluid.

In chapter 3 electrical conduction in an MHD channel with model
conductivity distributions is examined. One dimensional conductivity
nonuniformities are first examined in the presence of the Hall effect.
Numerical solutions are then obtained to two dimensional nonuniformity
situations which arise with finite electrode segments. It will be shown
that in general the existence of nonuniformities leads to a degradation

of performance as reflected in increased internal impedance of the con-




ducting gas and depressed Hall voitage.

In chapter 4 several theoretical questions concerning instabilities
and the steady state characteristics of ithe conducting gas are consid-
ered. These instabilities arise when nonequipartition heating of the
electrons occurs in a magnetic field. |+ will be shown that there ex-
ists an important correspondence between the conditions for stability
of the non-steady equations and the condition for uniform ellipticity
of The steady eguatiocons.

fn chapter 5 the finitely segmented electrode MHD channel is exam-
ined with a nonequilibrium conductivity and nonuniform Joulean heating
arising from the finite size of electrode segments. For these caicula-
tions, the electrons are assumed to be in ionization equilibrium at the
local (nonuniform) electron temperature. It will be shown that the non-
uniform Joulean heating, |ike 6Ther nonuniformities, leads to an in-
crease in internal impedance and a reduction of the Hall voltage.

Consideration of the conditions under which the electrons may be
driven out of ionization equilibrium by gas dynamic connection is pre-
sented in chapter 6. A model periodic Temperafufe field corresponding
to the periodic high temperature zones in a finitely segmented MHD chan-
nel is utilized to study the response of the electron number density to
temperature disturbances in the presence of a convective nonequilibrium.

In chapter 7 the problem of a finitely segmented electrode MHD chan-
nel with Joulean heating induced nonequipartition of electron and gas
temperature is again reconsidered. The electrons are now allowed to ex-
perience an ionization nonequilibrium due to gas dynamic convecticn.

i+ will be shown that the existence of finite rates of ionization and



recombination lead to an antisymmetry between the upper electrode wall
and the lower electrode wall. These results will be shown to be in

qualitative agreement with experimental measurement.




In this chapter the basic principles governing electrical conduction
in a quasi-neutral gas are presented. The zlectromagnetic and diffusion
equations are showm to contain unknown transport property gradients and
hence are not closed. Two methods of closure are presented: one method
introduces model conductivity distributions obtained either heuristi-
cally or from experimental data; the second method is based on a non-
equilibrium conductivity resulting from Joulean-heating induced non-
equipartition of electron and gas temperature. Consideration is given
to the boundary conditions and magnetohydrodynamic channel geometry to
which the basic principles are to be applied. Global resistance and
conductance tensors are described which reflect the overall electrical
behavior of the channel based upon the detailed distribution of current

and potential within the conducting gas.

2.1 Electromagnetic and Diffusion Equations

Consider an orthogonal right-handed coordinate system with axes de-
noted x, y, z, as shown in Fig. 2-1. A strong imposed magnetic field B
is oriented parallel to and in the direction of the positive z axis. In
the x,y plane normal to B a fluid flows with mass velocity U and a con-
duction current density J is established. The changes in time which oc-
cur in this medium are assumed to be slow enough so that the time depen-
dent terms in the Maxwel|-Faraday equation and the current conservation
equation are negligably small. |f the imposed field B is unperturbed by
the current J which flows in the gas (i.e., the magnetic Reynolds Number

of the flow is smali), the appropriate equations for the electric field
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E - (EX,Ey) and the current density 7= (JX,Jy) are the Maxwe!l- Faraday
equation and the current conservation equation for an electrically neu-
tral fluid:
curt € =0 div =0 (2-1)
The electrical conduction current density J is assumed fo be domin-
ated by the electron conduction current. The generalized Ohm's Law is

then?2,23

]‘=?-<'L—"+'E'n>, or B'=%-7-F. (2-2)

In Eq. (2-2) gn represents the effective field acting on the electrons

due to electron pressure gradients and is given by?23

- £ grad (n_ T (2-3)
n ene e e

The field ' = E + U x B represents the electric field in the moving
fluid frame of reference. The conductivity tensor o and resistivity

tensor B*are given by
7o, -8 =1 B (2-4)
B | -8 |

The scalar conductivity o, Hall parameter B, and coefficient o, may be

B
expressed as

g

= = yB = ———
a en M, B uB, 08 N

The electron mobility is u = e(m_  Iv .) , where Ve is the average
electron momentum transfer collision frequency with species j and Mg

is the electron mass.
From equation (2-1) the electric field E may be represented as the

gradient of a potential ¢. For those cases in which curl (UxB) = 0, the
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electric field E' may also be represented as the gradient of a potential
o'

£ = -va’. (2-5)
For this case, ¢ and ¢' are related by the line integral of UxB.  We
shall assume in what follows that U is'always prescribed such that the
above is true. Equations (2-1) also permit the representation of T in

terms of the flux function y:

- - - -
b= 3y 3, = (2-6)

Substituting from Egs. (2-2) into Egqs. (2-1), two equivalent sets
of equations for £’ and J may be developed where each set contains only

£’ or J. The set containing B’ is termed the field representation:

aE; JE!
! 4 = -7
v ——Xay + qgEl+ rEEy + Qg(n,,T) =0, (2-7)
oE ! ok ’
X - _YX=o,. (2-8)
3y 9x

The set containing only J is termed the current representation:

aJ aJ
= - X = -
v e qJJy + rJJx + QJ(ne’Te) o, (2-9)
LN N
X+ X = 0. (2-10)
X ay

The functions appearing in Egs. (2-7) through (2-10) are defined as fol-

lows:

) P Qn(os) , 3 Kn(cs) . 3 Ln(B) i1y
G ax ay 3y '
9 on(o ) 9 nlo,)
v B ] 3 zn(B)] _
e N s[ —t =2 , (2-12)




T -

- __hx ny nx _ _ny oz
QE(ne"e) 9% * dy t 8 3y ax J * qEEnx * rEEny’ (2-=13)
3 nlo) (3 (o) & mig))
- - + B - J (2-14)
Y 3x | 3y ay ’
3 nlo) ERZICIEEE: Qn(B)}
r S e e———— - B -— (2"‘5)
J 3y | 9x ax ’
e
aEnx BEn
QJ(ne,Te) = O'\—-a-gl— - ——Xax . (2-16)

Under those circumstances where the "field" En is much smaller than the

o ’ 1 - - -
field E', the terms 0g(ng,Tg) and Q,(n_,T ) in Egs. (2-7) and (2-9) be
come negligible. |f the potential change is of order A% over a region
in which the electron number density changes significantly, it follows

from Eq. (2-3) that

E kTe/e

E—',’m - (2-17)

From (2-17) it can be seen that, with strong app!ied potentials, En will
in general be much smaller than E’; exceptions occur for such cases as
the region of a plasma in contact with a cold catalytic surface in the
absence of a strong applied field. If QE(ne,Te) and QJ(ne’Te) are ne-
glected, the system of equations in either the field or the current rep-
resentation may then be combined by introducing the potential ¢’ and

flux function . In terms of the second-order operator

YRR AL (2-18)
E,J X dy E,J 3x E,J 3y )



the foregoing equations may be written as

ME(¢’) = 0, MJ(w) = 0, (2-19)

The functions e and r assume the forms AQer g and q,, ry», respec-

E,J

tively, for the operators ME and MJ. The functions Qe and r vanish

E,J

if The conductivity is uniform.

Either the field representation or the current representation may

be utilized in the description of the electric conduction. In much of
the develiopment which follows, the field representation will be used.
The parallel development in the current representation is similar. In

the work which is Yo be described, numerical calculations have been per-
formed using both representations to check for consistency of the nu-
merical results., Once a solution for either &' or y has been obtained
by solving either of Egs. (2-19), the other function may be obtained by
a straightforward integration using the Ohm's Law, Egs. (2-2) and the

definitions (2-5) and (2-6).

2.2 Model Conductivity

The transport properties which appear in Egs. (2-7) through (2-10)

through the functions 9% and r are as yet unspecified; hence, the
’

E,d
elecfrical equations are not closed. In the present analysis, we shall
consider two methods of closure. In the first, we may directly intro-
duce heuristic model distributions of o, B, u, and Ne (or gn) into Egs.
(2-7) and (2-9) and examine the effects of such distributions on the

~resulting current and potential fields. These property distributions

may be constructed to refiect actual Joule heating effects in the energy
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equation of the gas; or in the case where the dynamic and therma!l state
of the gas is dominated by viscous and heat-conduction effects of the
heavy species of the gas, they may be caicuiated from the *temperature
and density fields of existing solutions for channel flows.

The model distributions mighT also simulate the effect of high con-
ductivity regions near current concentrations in segmented electrode
magnetohydrodynamic channels; or when ionization and recombination ef-
fects are important, the effects of frozen ionization could be modeled
by layers of uniform conductivity near the conducting and insulating

surfaces in the channel as Kerrebrock!? has suggested.

2.3 Nonequilibrium Conductivity

The second method to be considered for the determination of the
electrical transport property distributions required in Egs. (2-7) and
(2-9) incorporates the electron energy and ionization equations. For
this method o, 08’ and B are regarded as functions of the local thermo-
dynamic state of the gas, which is fixed by the mass density p, temper-
ature T, and neutral species composition. This dependence is symbolized
as p, T, .... In the event that the electron temperature Te deviates
from the gas temperature and/or the electron number density deviates
from its Saha Equilibrium value, this set of state variables must also
include the electron ftemperature Te and the electron number density N
The transport properties o, g and B are thus in general functions of
the state variables o, T, «v. , T, n_.

e e

With this point of view, the terms qEE;, rEE;, qJJx, rJJy in Egs.

(2-7) through (2-10) may now be expressed to reveal explicitly their
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dependence upon the state functions p, T, ... , Te’ ne. Thus if n =

nte, T, «v. , Te’ ne) represents o, GB’ or B, and £ represents either x

or y, the generalized gradient 23

3 &n(n) 3 tn(n) 3o
13 ap £

+ 3 nin) aTe
BTe &

|f the gradients of o, 08’ and B

pressed according to Eq.

JE! oE
X

— 4
X ay

e
+ FE(ne)ax

aJ aJ
= - X
ay X

where

FE(n)

!

E !
X

3T
e e
+OFeTge * Ge(Te +

a1 9

9 n(n) e

(2-20),

¢n(n)/3E may be expressed as

gn(n) 3T

an

o T (2-20)
e

appearing in AQe» Tgs 955 and r, are ex-

there results for Egs. (2-7) and (2-9)

oT

an ane
+ GE(ne)—ay—' + FE = O, (2-21)
3Te 9T
+ FJ(Te)s;—- + GJ(Te)EV_ +
ane ane
= S = -22
+ FJ(ne)ax + GJ(ne)ay + FJ 0, (2-22)
P Qn(os) - 3 ln(oB) . 3 ()
an y{ 2n an J '’
(2-23)
3 zn(oB) . g Er 3 Qn(oe) N 3 4n(B)
an x{ an an ’

| GE(n)

EI
Y




) _ 9 n(o) 3 n(R) 0 n(o)
F = - - —_—
AL B Pr 3 JJX + 5 Jy,
(2-24)
- _ 9 n(o) _ 3 tnlo) o in(B)
GJ(n) - an Jx 8 an - an Jy'

The functions T'_, T contain the effects of gradients in the heavy spe-

E? " J

cies properties of the gas:

- r ' -

PE (qE)T N EX + (rE)T n Ey + QE’ (2-25)
e’'e e’e

FJ = _(qJ)T .n Jy + (rJ)T n J>< + QJ. (2-26)
e’ e e’ e

The subscripts on g s 9y and ry indicate that Te and n, are to be
held constant while the derivatives of o, OB’ and B are calculated.

In what follows, the distributions of the gas state variables p,
T, ... are assumed to be given (hence the functions PE’ FJ are pre-
scribed); the electron temperature and number density however are de-
termined by appropriate electron continuity and energy equations, which
are now described.

The electron number density Ne is governed by the electron continu-

ity equation?2

—© 4 ovetny - L9 o= n. (2-27)
e e

For the plasma of interest in the present study, the particle production
and recombination term Be is due principally to electron neutral impact

and three body recombination, so that
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= 2 _ 52 -
Ne ane(ne Ne ), (2-28)

where a(Te) is the recombination coefficient and nz (Te) is the equilib-
rium number density. A theory for the dependence of a on T is given by
Hinnov and Hirschberg?* (see also appendix C). The equilibrium number

density n; (Te) is given by Saha's relation:
2
n* (T ) = n_K(T)), (2-29)
e e s e

where the equilibrium constant K(Te) is

27 mek Te %- -€,
K(Te) = G —z | exp ;ﬁz; ’

and G is a factor involving statistical weights. The ionizable species
number density is Ng and € is the energy reguired to singly ionize an

s species atom. Using Eq. (2-1), Eq. (2-27) may be expressed as

an 2

& 4 ve(n) = an (n*® - n Y, (2-30)
ot e e e e

The electron fluid energy equation in a form suitable for the plasma

under consideration ist0

2n GkT_ +e| + Veln :(ékT +€)] + p Ven o+
3t e 2 e i e e i e
>

+ Veq, - JEr+ en (7, -T) = 0, (2-31)
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<>
P UE S <.t ], (2-32)
L‘ e | c o] v

(]

and xe is the electron fluid thermal conductivity. The coefficient 8
is proportional to the rate at which energy is transfered between the
electron fluid and the heavy species in the gas. For purely elastic
collisional transfer from the electron fluid to heavy monatomic species,

8 is given by?>

me
e = Skz m—\)
JUJ

) * (2-33)
where mj is the mass of a heavy species particle. |In developing the
energy equation (2-31) it has been assumed that in the volume of the gas,
the stress work and inelastic collisional energy transfer terms which
result in a loss of energy from the gas are smail compared to the
Joulean heating of the diffusing electrons and that the heavy species
temperatures differ negligibly from the gas temperature. Thermal dif-
fusion effects have been neglected in both the electron heat fiux and
the current density.

It is to be noted that if the heavy species property distributions
o, U, T, ... are given, Egs. (2-21) and (2-8) [or (2-22) and (2-10)]
with Eqs. (2-30) and (2-31) form a closed system for E;, E;, (or Jx’ Jy)

n, and T _.
e e
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2.4 Boundary Conditions and Channel Geometry

2.4.1 The gas-solid interface

The application of the differential equations (2-7) through (2-10)
fo a gas in contact with conducting and insulating surfaces will be con-
sidered. Lyubimov2® has suggested that the gas-surface electrical in-
terface which embodies the effects of electrode emission and absorption
extends over a thin region near these surfaces of the order of colli-
sional free paths. Some invesTigaTor527 have proposed boundary condi-
tions which may in some sense model the interface phenomena; however, in

the interest of explicitly revealing the role of volume effects, the ef-

fect of the interface will be neglected entirely and the conducting sur-
faces in contact with the gas will be assumed infinitely conducting, and
the potential of the gas and the conducting surface will be assumed

identical at the conducting surface. Insulating surfaces in contact
with the gas are assumed infinitely nonconducting. The boundary condi-
tions on the gas are then the condition of constant potential ¢ on con-
ducting surfaces and the vanishing of the normal component of current

T on insulating surfaces.

2.4.2 The infinitely long periodic channel

The geometry of interest for the application of the foregoing equa-
tions is a two-dimensional channel with conductors and insulators ar-
ranged in an infinitely long periodic structure as shown in Fig. 2-1.
The fluid mass velocity is assumed to be in the positive x direction and

to be a function of y only: u, = ux(y). It is readily verified that
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L. > > ) .. .
the condition curl(uxB) = 0 is satisfied and that ¢' and ¢ are related

by
8'(x,y) - 8'(x,00 = o(x,y) - &(x,0) + B jz U(E)dE.  (2-34)

For such a configuration, the boundary conditions may be specified as
follows. The existence of periodic solutions for E’, J requires that
the fluid properties also be periodic. While this will in general not
be the case, the nonperiodic variation in the important parameters for
the determination of the electrical transport properties can, in many
cases, be neglected over the region consisting of several pairs of elec-
trodes. Under such circumstances the periodicity conditions imposed on

the gas properties are (for period of length %)

T(x + 2) = T(x),
plx + ) = pix),
(2-30)
Te(x + %) = Te(x),
n (x + Ly = n 00
The periodicity of the conductors and insulators requires
ol (x + 2,y) = d'(x,y) + V; ,
(2-36)
pix + L,y) =  Yix,y) + Iy ,

where V; is the axial voltage difference in period 2 and Iy is tThe
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transverse current flowing through the electrodes. The remaining bound-
ary conditions on ¢' on the conducting and insulating surfaces are

for |x| < a/2,

8'(x,0) = O, 8'(x,h) = v

and for y = 0 or h,and either -2/2 < x < -a/2 (2-37)

or a/2 < x < %/2, Jy = 0 implies that

The electrode length is a, the period length is %, and the channel
height is h. The boundary conditions on ¢ on the conducting and insu-

lating surfaces are

for -2/2 < x < -a/2,

1
W

Yi(x,0)

1]
o
-

yix,h)

for a/2 < x < /2,

(2-38)

¥(x,0) I, wix,h) = I -1,

and for y = 0 or h, and |x| < a/2, E} =0 implies that

o gl
3y B 5% 0.

The potential V; is the transverse voltage across opposed electrodes in
the period length 2, and the current Ix is the total axial current

flowing in the channel, assumed positive in the negative x direction.

24




It can be shown (appendix B) that the specification of a pair from the
f " | 1" ! ! ! !

our "global™ voltages and currents Vx’ Vy’ Ix' Iy’ such as (Vy,VX),
(Iy,Ix), (V;,Ix), (V;,Iy) detfermines a unigue distribution of electric

field and current within the gas.

2.9 The Resistance and Conductance Tensors

Let the vectors V’, T have components e (V;,V;), T = (Ix’Iy)'

A resistance tensor R and conductance tensor § = (R)~! based upon these

quantities may be defined as

vr = |- 7, T =%9.v, (2-39)
where
<> RXX X
R = Y. (2-40)
R R
yx o oyy

The resistance Tensor<§*depends upon the distribution of the electrical
transport properties within the gas, The geometrical parameters of the
channel a, %, h, and, when nonequipartition eiectron heating is possible,
the potential vector Vi, 1t s readily shown (appendix B) that the

electrical power dissipated in the gas in a channel of length & is given

by

P, = I2R + I?R + T I (R +R ). (2-41)
d X XX Yy Yy X7y Xy yX

The elements of R therefore represent the internal impedance of the

channel .
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Several special cases are of interest. In the idealized case when
the conducting gas has uniform electrical transport properties and the

electrode segmentation is infinitely fine, it follows from Eq. (2-2)

that
R® R®
R =R = | X, (2-42)
R® R®
yx Yy
where
R® =a;1[&), R° = 00" 1By, R° =-0o"1B,, R° =o°-1[ﬁ]. (2-43)
XX h Xy yXx Yy 2

The uniform conductivity and Hall parameter for such cases are denoted
Oo, Bo-

A second special case is that in which the gas properties may be
nonuniform; however, the Hall parameter 8 is identically zero. In that
event, the principal impedances Rxx’ Ryy will be denoted Rxx(O)’ R y(0).

An important mode of operation of the channel is that in which
Ix = 0 and power is transferred into or out of the gas through the
transverse circuit. This mode of operation is called the "Faraday
Mode". in that event, the internal impedance of the channel to such
power transfer is Ryy' The voltage which develops in the axial direc-

tion under such circumstances can be shown from Egs. (2-39) to be given

by
R
\Y) ! = _.lx vV 4 (2-44 )
X R y
yy I :O
X
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The voltage V; given by Eq. (2-44) js called the Hall voltage. The

Hall voltage for uniform properties is denoted V;o. From Eq. (2-43),

' = had ' -
on Bo [h] Vy . (2-45)

A non-dimensional Hall voltage for a general nonuniform gas may be de-

fined as

(2-46)

<
T
1t
.
-

and a non-dimensional transverse impedance may be defined as

R
R XY -
Ryy(O) . (2-47)

0
"n

These non-dimensional quantities will be useful in describing the over-
all electrical performance to be discussed in chapters 3, 5, and 7. By
virtue of the normalization of Ryy on the impedance which occurs with

uniformities but no Hall effect, the parameter ﬁ} reflects those effects

on performance which the Hall effect introduces over and above those

introduced by the conductivity nonuniformities alone.
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3. NONUNIFORM ELECTRICAL CONDUCTION WiTH
MODEL CONDUCTIVITY DISTRIBUTIONS

In this chapter solutions to the electrical equations (2-19) with
model conductivity distributions discussed in section 2.2 are presen-
ted. Consideration is first given to nonuntiform distributions in one
dimension for which simple analytical results are obtainable. Two-
dimensional nonuniformities with finite electrode segments are then
considered and detatiled numerical solutions for potential and current
within the gas are obtained. The effects of layered conductivity vari-
ations consisting of high and low conductivity layers over the elec-
trodes are examined. The distribution of current on a finite electrode
segment with a nonuniform layered conductivity is compared with experi-

mental measurements.

3.1 One-Dimensional Nonuniformities

3.1.1 One-dimensional nonuniformity solutions

In the imit in which the electrode structure of a |inear magneto-
hydrodynamic channe! becomes either infinitely finely segmented or con-
tinuous, nonuniformities resulting from the finite size of electrode
segments vanish. |f in addition property variations occur in only one
of the coordinate directions, then both the fluid variables and geomet-
rical variables are uniform in one of the coordinate directions. Solu-
tions of the electrical equations (2-7) and (2-8) or (2-9) and (2-10)
are now developed for this case when the electron pressure gradient

field € is negligible.
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Consider that all variables are independent of the x coocrdinate so

that

S (gt _
™ (Ex,Ey,Jx,Jy,O,B) = 0,

Using the above condition, the Maxwell Equation curl E' = 0 and the cur-

rent conservation equation veJ = 0 become

BE; 3J
gy—— = O, —xay = 0.

It thus follows that E; and Jy are constants, but that E; and J_ may be
functions of y. |If the average operation <> for any function f(y) is

defined as

1 ,h
<f(y)> = Ff f(y)dy, (3-1)
0

then Ecs.(2-2) of chapter 2, with Eé = 0, may be solved for E; and Jx

in ferms of E; and Jy and then averaged according fo Eqg. (3-1). The

result is
[ 1 + 62 - 1
<E'> = - <B>E!, <J > = <g>E - <B>J . (3-2)
Y o} Y X X X Y

These equations were first obtained by Rosal®, who used them to examine
the effects of random one-dimensional nonuniformities in a conducting
gas. Rosa's Eqs. (3-2) may be cast in a useful and compact form which
may be regarded as a "global Ohm's Law" for a nonuniform gas. This
form is achieved by solving Eqs. (3-2) explicitly for <Jx>' Jy in terms

of E!, <E'>:
X Y
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1+82

<Jx> 1 <g>< > - <B>2 ~<B> E):
= _ (3-3)
; Lt B‘> <8 ! <E'>
<B>
y ° y
The inverse of Egs. (3-3) is
E)'( , 1 <B> <J><>
i~ . (3-4)
2
<E'> -<Bg> <c;><1+B > - <g>2|| J
Y Y

The resistance Tensor'ﬁrmay be extracted from Egs. (3-3) and (3-4) for

the case of one-dimensional nonuniformities.

3.1.2 The resistance tensor

The global voltages and currents V;, V;, Ix’ Iy’ may be introduced

by noting that by definition

VI

E! = -,
VI

<E'> = __EY.,

(3-5)

IX

<Jx> = e~
I

5,os - = -

In terms of the vectors V' (V1 V) and T (I,,1), Eqs. (3-3) and (3-4)

are
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vro= R T, T =%, (3-6)

where the global resistance and conductance tensors are defined as
L2 L
R (0 | F >R
SRp & - (3=7)
<g><o~1> ’
2
-<B>F G

h h

R°L(0)<o™1> | & (PF -<B>3
[ AR : (3-8)

1 + 8
< 5 > h
it 1
<3>£ J
The factor

G = <o><o”!> [1 + <0151 (<p20-1> - <g25<g>-1)] (3-9)

contains the coupling of nonuniformities and the Hall effect and is
equal to unity in a uniform gas. Based upon the definitions given in

chapter 2, the non-dimensional transverse impedance R.. and Hall voltage

T
Vh for Faraday operation (I =0) are
_ R
RT = ) = 1+ GB , (3-10)
YY
V! 1
— X _
VH = V-T— = F;.’ (3-11)
X0
where
G, = <o~ l>71 (<p2g71> - <B2><g7l5), (3-12)

B
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In those cases where 8 is uniform, the above results reduce to

G = 1+ G*(1 + g2), (3-13)
_ G* 2
Gy = { T ]s , (3-14)
|
where
G* = <gy<g-l> - 1. (3-15)

Thus for uniform B, the non-dimensional impedance and Hall voltage be-

come
= G* )
vV, = ! (3-17)
H 1 + G¥(1+82) ~

it may be observed that when G* -+ 0, the uniform conductivity results

are obtained:

0

+ 1 and Vh > 1, as G* + 0.

For very strong nonuniformities, G* » =, and there resulfs the |imit

ﬁ} > (1 + B%) and VF > 0, as G* » =.

It may be noted that these Iimiting values for strong nonuniformities
are precisely the same as the results for continuous electrodes (E;zO).
Thus, strong conductivity nonuniformities may destroy the effect of

electrode segmentation, even if such segmentation is infinitely fine.
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3.1.3 Pctential and current distributions

The potential &'(x,y) and current flux function ¥(x,y) may be ob-
tained by integrating Eqs. (2-2) with En = 0 and using the condition
for one-dimensional nonuniformities in the y direction that E; and J

are constants. The results in terms of V;, Iy are
! - ! = A - P - i ! E -
®'(x,y) $'(0,0) [pB(y) Iy (B(y) h)VX] T (3-18)

- - (3 Xy7 - sy D -
Pix,y) - ¥(0,0) C(B(y) + DI sVl (3-19)

~

The functions &(y), B(y), and pB

(y) are defined as

5(y) = %.fy o(£)dE (3-20)
0
Bly) = %.jy B(E)AE , (3-21)
0
5y = Ly 1r8E) (3-22)
AR G (L) - :

3.1.4 Layered conductivity nonuniformities

To obtain specific results from the general formulation described
above, the following form of the model conductivity will be considered.
For simplicity, the Hall parameter B will be taken as a constant, and

oly) is assumed to be of the form



’

= - L
for 0 £y < 8§, oly) o, + (o, ow) 5
for § £y £ h-§, oly) = 0 , (3-23)
for h-6 <y < h, oly) = Sy + (0o - a,) Te&§’

This distribution represents layers of thickness 8§ of high or low con-
ductivity over the electrodes and insulators. The conductivity in the
the core of the gas is o,, and 9, is the conductivity at the electrode-
insutator wall. Such a distribution would be characteristic of heating
or cooling near the electrode walis with & representing a characteristic
layer thickness. This distribution could also represent layers of fro-
zen ionization over the electrodes and insulators, as suggested by Ker-
rebrock.19,20

The conductivity nonuniformity function G* has been calculated for
this mode! distribution and is shown in Fig. 3-t for values of &/h and
ow/co. The non-dimensional transverse impedance ﬁ% and Hall voltage VF
are shown in Figs. 3-2 through 3-5 for various values of cw/oo and 8.
I'n Fig. 3-2, the nondimensional impedance ﬁ} is shown as a function
of the Hall parameter { for various values of ow/co. The nondimen-
sional Hall voltage Vﬁ is shown in Fig. 3-3 for these same cases. Also
shown for reference is the value of ﬁ% for continuous electrodes. |7
can be seen that the impedance is increased and the Hall voltage de-
creased as a result of the nonuniformities. This deterioration of per-

formance becomes more pronounced for large Hall parameters. In Figs.

3~4 and 3-5 the effect of nonuniformities for a fixed value of Hall pa-
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rameter is examined. As the nonuniformity is increased, the performance
again exhibits deterioraticn. |t should be noted that both high ard iow
conductivity layers cause increased internal impedance, even though a
high conductivity layer in the absence of Hall effects would lead to a
decrease in internal impedance. This fact may be seen more clearly by
examining Ryy normal ized on E% [%J, the impedance of the gas if it were
of uniform conductivily at the core value g,. This non-dimensional im-
pedance is also shown in Fig. 3-4 and is always greater than unity.

it should also be noted that the performance degradation shown in
Figs. 3-4 and 3-5 is more pronounced for high conductivity layers than

for low conducfivity layers.

3.2 Two-Dimensional Nonuniformities

3.2.1 The non-dimensional equations

In the absence of significant diffusion of charge due to electron
pressure gradients and an electrical conductivity specified as a func-
tion of space within the channel, The governing equations for the po-

tential ¢’ and the flux function ¥ were shown to be (section Z.1!)
M_te") = 0, MJ(w) = Q. (3-24)

The operators ME and MJ are defined in section 2.! and contain the ara-
dients of the given electricai concductivity distribution. The above
equations may be ron-dimensionalized as tollows. Let Vo be a charac-
teristic voltage and I, = 0oVod/h a characteristic current per unit

The

channe! depth where o, is a characteristic conductivity. tLev h

¥

chanpnet height, be a characteristic fength. A nondimensiona! pofentia
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and flux function may be defined as

— e - v
z I = el = e
v - VO b4 w - Io ’
and nondimensional operators ME, MJ as
M. = h?M, Moo= ng.
The Egs. (3~24) become
M (3! - M (0 =
ME(Q ) = 0, MJ(w) = 0.

(3-25)

(3-26)

The boundary conditions discussed in section 2.4 become, in nondimen-

sional form,

Periodicity:
TN(xHT,Y) = BUX,y) + M
VAT,Y) = ¥(X,y) + Ty ,

Conductor-insulator conditions in Field representation:

for -a/2 < x < a/2, ?'(x,00 = 0, 3'(%,1)

t
<]
< <

for y = 0,1 and either -%/2 < X <-a/2 or a/2 < X < %/2,

4]

(3-27)

(3-28)



Conductor-insulator conditions in current representation:

for ~2/2 < X < -a/2, vix,0) = 0, $(x,1) = -T,
vx,1)y =T -T, (3-29)

for a/2 < x < /2, ¥(x,0) = T

for y = 0,1 and -a/2 < x < a/2,

QL
<=l
'

@ |
x|l
I

o

The nondimensional potential and tota! current are defined as

= —— V! =
Vx - VO ’ V - Vo ?
;LK r ok
e = 1,0 I, 5 1

The nondimensional lengths are

x = x/h, y = vy/h, a a/h, L = &/h.

In The calculations which follow, The characteristic voltage Vo is se-

lected as V; so that V! = |, I, = GOV;Q/h.

3.2.2 Layered conductivity nonuniformities

in the case of finitely segmented conductors, the solutions of the
boundary value problem described by the foregoing equations with a model
nonuniform conductivity were obtained numerically. (A discussion of the
numerical procedures is given in Appendix A.) The effects of layered
conductivity nonuniformities with finite electrode segments will now be
described.
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Consider a mode! distribution of o according fo Eq. (3-23) with a
Hall parameter of unity. |In such a situation property variations occur
in the y direction and electrode~induced nonuniformities occur in the x
direction. The current distribution for this case with a uniform con-
ductivity is shown in Fig. 3-6 for reference. In Fig. 3-7, the current
distribution for a low conductivity layer with §/h = 0.2, ow/oo = 0.2
is shown. |t can be seen that the low conductivity layer tends to
straighten the current in the core of the gas relative to the uniform
conductivity case. This straighftening effect results because the low
conductivity gas near the insulators acts as a region of high electrical
impedance in which the current tends not to flow. The current therefore
tends to flow directiy across the channel from electrode to electrode.
In Fig. 3-8, the current distribution for a high conductivity layer with
§/h = 0.2, ow/o° = 5 is shown. 1In this case, tThe high conductivity
layer tends to short out the effect of the insulator since the high con-
ductivity region over the insulators acts as a region of low impedance
in which the current readily flows. The gas in the core is thus in the
presence of an electrode wall which appears very much like a continuous
electrode; thus the current in the core tends to flow at the Hall angle
tan~1(B). Near the electrode edge a large local axial component of
current must exist to provide a path for the current attracted to the
insulator region to flow into the electrode. It should also be noted
that the dividing current streamline between electrode pairs has shifted
from its position near the center of the insulator with a uniform con-
ductivity towards the left hand lower electrode edge with a high con-
ductivity layer.
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In Fig. 3-9 the cumulative distribution of normal current over the

electrode

X
I = [ (6,00 = yix,0) - p(-2,0)
a Y 2

is shown for the foregoing cases. It can be seen that a layer of low
conductivity gives rise to a more uniform distribution of current on
the electrode, whereas a high conductivity layer introduces a greater
nonuniformity in the current distribution relative to the uniform con-
ductivity case.* These effects are explainable in terms of the large
current which must enter the electrode at its edge when large currents
are attracted fto the region over the insulator.

In Figs. 3-10, 3~1|, and 3-12 the potential distribution &'(x,y)
is shown for the same cases discussed above. In the case of a low con-
ductivity layer, large potential drops occur over the electrodes,
whereas in the case of the high conductivity layer, the principal poten-
tial drop occurs in the core except for the large drops near the elec-
trode edges. Since the bulk of the current enters at the electrode
edge, the bulk of the current flows through the large potential drop at
the edge of the electrode which manifests an overall large internal im-
pedance.

[+ may be observed that in both cases of high and low conductivity
tayers, the effect of the layers is to shield the current and potential

distribution in the core from the finite segmentation effect. In both

*These results may be contrasted with the model employed by Kerre-
brock! 9,20 in which a uniform distribution of current is assumed to co-
exist on the electrode with a high conductivity tayer.
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cases, the current and potential distribution outside of the layers is
remarkably uniform.

The distribution of the potential ®' on the insulator wall is shown
in Fig. 3-13 for the cases discussed above.+ It can be seen that al-
though the low conductivity layer produces the greatest initial rise in
pofential, it then falls off below the uniform conductivity case. The
high conductivity layer produces a consistently lower potential rise
along the insulator relative to the uniform conductivity case.

The effect of high and low conductivity layers with large Hall pa-
ramaters has been examined. For reference purposes, the current dis-
tribution with uniform conductivity and B = 3 is shown in Fig. 3-14.

The results which will now be discussed are for a uniform Hall parameter
B = 3 and layered conductivity nonuniformities given by Eq. (3-23) with
§/h = 0.2 and ow/o° = 0.2. The current distribution for low conductiv-
ity layers is shown in Fig. 3-15 and the detail region near the elec-
trode is shown in Fig. 3-17. It is interesting to note that for this
large value of B, the current in the layers flows at an anglie near
Tan’l(B), as was the case with uniform conductivity; however, in the
core of the gas, the current is flowing at an angle considerably dif-
ferent than that with a uniform conductivity (Fig. 3-14). The core cur~
rent for this high value of 8 tends to flow almost transverse to the
channel walls, as contrasted to that for a uniform conductivity with

B = 3.

The current disfribution with a high conductivity layer with

tThe relation of The pofential ¢' to the laboratory potential ¢ is
discussed in section 2.3.1.
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ow/o° = 5 and a Hall parameter B = 3 is shown in Figs. 3-16 and 3-17.
|t can be seen that the trends established with a high conductivity
layer and B = | persist. Note that the dividing current |ines have
moved onto the electrodes so that current is now entering the lower
electrode at the downstream end and ieaving the same electrode at the
upstream end. This effect also occurs with uniform conductivity dis-
tributions with Hall parameters of the order 8 = 2 and values of the
electrode to insulator length ratios a/f& near one as reported by
Crown,13

The distribution of electrode current I(x) for the layered model

with B

3 is shown in Fig. 3-i8. In general, the trends established

with B = | persist: low conductivity layers spread the current out
over the electrode and high conductivity layers intensify the current
at the electrode edges. The principal effect of the higher Hall param-
eter is to intensify the amount of current entering at the electrode
edge. This more nonuniform distribution is then further made even more
nonuniform by a high conductivity layer or more uniform by a low con-
ductivity layer. With low conductivity layers, the fendency towards
uniformity at high B is relatively less than that at lower B, as can be
seen by comparing the high B results of Fig. 3-18 with the B = | results
of Fig. 3-9. |In the case of the high conductivity layer with a large
Hall parameter, the current both eneters and leaves the electrode as
shown by a decreasing I(x) over the upstream edge of the electrode.

The potential distributions for the B = 3 cases discussed above

are shown in Figs. 3-20 through 3-23 and the uniform conductivity dis-

tribution is shown in Fig. 3-19 for reference. Large potential drops
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Fig. 3-18 Electrode current distribution for various
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degrees of nonuniformity for the cases in
Figs. 3-14 through 3-16.
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exist near the electfrodes as wouid be expected for these low conductiv-
ity layers. With this larger value of the Hall parameter, the potentiali
lines tend to approach a paraiiei distribution with respect to the cur-
rent lines indicating that the current vector is tending to become nor-
mal to the electric field vector.

The distribution of potential along the insulator is shown in Fig.
3-23. The trends established for the potential distribution with B = |
also persist with B = 3. Note that the maxima of the potential along
the insulator shift towards the left edge of the lower electrode with
tow conductivity layers and fowards the right edge with high conductiv-
ity layers. This result is due to the mermenT of the current dividing
lines in those directions since the point of maximum potential on the
insulator occurs at the "stagnation point" of the current dividing
streamline.

All the foregoing layered model results with finite electrode seg-
ments lead to a nondimensional transverse impedance ﬁ} and Hall voltage
Vh. The behavior of the impedance ﬁ% for variable conductivity layers
and a finite electrode segmentation a/% = 0.5, &/h = | as a function of
B is shown in Fig. 3-24. Also shown for reference are the infinitely
fine segmented and continuous electrode impedances. |t can be seen that
for large Hall parameters, the finite segmented impedance is bounded be-
tween the infinitely fine segmented impedance and the continuous elec-
trode impedance. |t should be noted that for low values of B, the con-

tinuous electrode impedance falls below the finite segmented impedance.

This is because the need for segmentation to inhibit the Hall current
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st near the electrodes as would be expected for these low conductiv-
ity layers. With this larger value of the Hall parameter, the potentiai
lines tend to approach a parallel distribution with respect to the cur-
rent lines indicating that the current vector is tending to become nor-
mal to the electric field vector.

The distribution of potential along the insulator is shown in Fig.
3-23. The trends established for the potential distribution with B = |
also persist with B = 3. Note that the maxima of the potential along
the insulator shift towards the left edge of the lower electrode with
low conductivity layers and towards the right edge with high conductiv-
ity layers. This result is due to the movement of the current dividing
lines in those directions since the point of maximum potential on the
insulator occurs at the "stagnation point" of the current dividing
streaml ine.

All the foregoing layered model results with finite electrode seg-

ments lead to a nondimensional transverse impedance ﬁ% and Hall voltage

V.,. The behavior of the impedance ﬁ% for variable conductivity layers

H

and a finite electrode segmentation a/2 = 0.5, ¢/h = | as a function of
B is shown in Fig. 3-24. Also shown for reference are the infinitely
fine segmented and continuous electrode impedances. |t can be seen that
for large Hall parameters, the finite segmented impedance is bounded be-
tween the infinitely fine segmented impedance and the continuous elec-
trode impedance. It should be noted that for low values of B8, the con-
tinuous electrode impedance falls below the finite segmented impedance.

This is because the need for segmentation to inhibit the Hall current
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vanishes as B tends to zero. The finite coverage of the channel with
finite segments at such low values of B then makes inefficient use of
the full channel length and is thus defrimenta! to performance. In

Fig. 3-25, the effect of variations in B on the nondimensional Hall voi-
tage Vh is shown for various nonuniformities. The finite segmented Hall
voltage can be seen to be depressed below the infinitely fine segmented
value. |In addition both finite and infinitely fine segmented performance
is depressed by nonuniformities. This result emphasizes a general trend
observed in all the calculations: geometrical nonuniformities (finite
segmentation) and conductivity nonuniformities by themselves increase
the internal impedance of the channel. Where both nonuniformity mech-
anisms occur simultaneously, they increase the impedance and depress

the Hall voltage to a greater extent than could either nonuniformity
mechanism by itself.

In Fig. 3-26 the variation of the transverse impedance ﬁ} is shown
as a function of the conductivity nonuniformity ow/oO for a fixed &8/h =
0.2. It can be seen that the introduction of finite segments causes a
greater increase in the internal impedance for small degress of nonuni-
formity than occurs at larger degrees of nonuniformity. This is because
with strong nonuniformities, the effect of segmentation is virtually
destroyed even if the segmentation is infinitely fine (cf. section
3.1.2). Thus, variations in segmentation with strong conductivity non-
uniformities have little effect on performance. The nondimensional
Hall voltage Vh is shown for these same cases in Fig. 3-27. It can be
seen that the effect of finite segmentation is to reduce the Hall volt-
age below the ideal value for infinitely fine segmentation even with
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uniform conductivity. The effect of nonuniformities with such finite
segments is fto further reduce the Hall voltage below the reduction due

to finite segmentation alone.

3.2.3 Comparison with the measurements of Hoffman and Oates??

The electrode current distribution results shown in Fig. 3-9 for
low conductivity layers with B = | may be compared with the measured
distributions of Hoffman and Oates?9 which are also shown in Fig. 3-9.
These investigators performed experiments on a finitely segmented chan-
nel with a potassium seeded argon fiow. A center pair of electrodes in
their channel was constructed with one of the electrodes divided into
three parts but connected to a common bus. The current delivered to
each part of the electrode could be measured so that the quantity I(x)
could be experimentally determined. The gas temperatures for the ex-
periments were of the order of [300° K and the cooled electrode walls
were reported to range in temperature between 800° K and 1100° K. If
the gas in the vicinity of the electrode wall was assumed to be at the
reported electrode temperature and the eiectron concentration at the
wall were assumed to be in equilibrium, a crude calculation which assumes
a uniform mobility would yield ow/co v n;(Tw)/n;(To) where nz is the
equi librium number density and Tw and T, are the wall and core tempera-
tures, respectively. For the reported values of Tw and T,, the para-
meter cw/o° would be exceedingly small; however, it is not clear how
closely the reported electrode temperature reflected the actual surface
temperature of the electrodes. |t may be qualitatively concluded, how-

ever, that the overall features of this experiment involved cooling near
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the electrode walls which could be expected to give rise to a low con-
ductivity layer over the electrodes.

The measured results shown in Fig. 3-9 indicate a considerably more
uniform current distribution than that for a uniformly conducting gas.
Alfthough the finite emission and finite conduction characteristics of
the electrode provide possible explanations for the more uniform current,
the cool gas layer with a conductivity ratio of ow/oo 5 .05 also pro-
vides a plausible explanation of the experimental data. Conductivity
nonuniformities may therefore play some role in the interpretation of

current distribution measurements with Hall effects.
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4. SOME THEORETICAL CONSIDERATIONS OF
NONUNTFORM ELECTRICAL CONDUCT ION
WiTH A NONEQUIL IBRIUM CONDUCTIVITY

In this chapter constideration is given to the theoretical implica-
tions of the nonequilibrium conductivity model described in Section 2.3.
The stability of uniform steady states according to this model is exam-
ined and the mathematical type of the steady state form of the equations

18 established.

4.1 Dynamic Instabilities in a Nonequipartition Magnetic Plasma

A study of certain aspects of the dynamic stability of a nonequi-
partition plasma in the presence of a magnetic field will now be under-
taken. The motivation for this study is twofold. Firstly, steady state
solutions of a nonuniform electrical conduction field with a nonequilib-
rium conductivity which are inherently unstable would not have steady
state experimental counterparts of interest. Thus criteria which spec-
ify tThe stability of steady states governed by the nonequilibrium con-
ductivity model of section 2.3 are required. Secondly, an important
correspondence exists between the condition for stability of the non-
steady equations and the condition for uniform ellipticity of the steady
equations. This correspondence will be discussed in section 4.3.

A general stability analysis of the conducting gas in a general
nonuniform steady state would require inclusion of the full gas dynamic
and electromagnetic equations. Such a treatment is beyond the scope of

the present study. Instead, it will be assumed that the steady state
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values of heavy species gas properties are |ittle changed by the non-
steady behavior of the electron number density and temperature and by
the electric field and current.

A prerequisite to a systematic stability analysis is the solution
of the steady state equations (2-7) through (2-10) subject to the bound-
ary conditions discussed in chapter 2. Such solutions for finite sized
electrodes, however, must be obtained numerically. It is therefore de-
sirable to obtain information about the stability of a nonequipartition
plasma in a magnetic field without solving the nonuniform steady state
problem. This can be done to some degree by examining the stability of

a steady state which is uniform in space. f such uniform steady states

are found to be unstable, one would, in general, expect nonuniform steady

states to be similarly unstable. The stabilify analysis presented here
will therefore be restricted to uniform steady states.

Consideration is now directed to the region of the plasma where a
uniform steady state exists. In this region a steady electric field [

is assumed to exist which produces a steady current jo given by
To = 5o - B (4-1)

This current and field produce a local Joule heating which elevates the

electron temperature to a value Te according to Egs. (2-30) and (2-3i):
o]

- e o - 2. -
To. T + YEO(EO ) T + YJO(YO) (4-2)

The electron number density which exists in this region is given by
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n = n *(T_ ). (4-33

€o e €o
In The above, YE, = 080/6°neo’ Yo = l/coﬂeoeo, and a subscript "o" in-
dicates evaluation of the property in question at the state n_ , Te .
[ []

The non-steady Egs. (2-7), (2-8), (2-23), (2-24) are now expanded

about the steady state described above as

nix,y,t) = no + n'x,y,t), (4-4)

!

where represents n T E
n P e’ e’ X

or Ey’. As implied by the expansion
(4-4), the disturbances will be confined to the x,y pltane. (The stabil-
ity analysis may be carried out in either the field representation or
the current representation; it is done here in the field representation.)
The primed quantities may be viewed as small perturbations which are
given to the steady state system. Since it is assumed that the heavy
species properties of the gas are little influenced by the initial per-
turbations in the electfron fluid properties, the state variables p, U,

T, ... maintain their steady state values as Ngo Te’ EX’, Ey' undergo
perturbations about that steady state. The coefficients appearing in

these equations which are functions of N? Te’ and €' are similarly ex-

panded about the steady state; e.g., if n represents o, Ogs B, etc.,

n = n°+a—T—T'+§'n—n,. (4'5)

The stability analysis proceeds by substifuting the forms (4-4) and

(4-5) into the non-steady equations and neglecting terms involving prod-
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ucts of the primed quantities. There resuits a linear system of equa-

tions inn ', T ', E" ,E" .
e e X y

The perturbation functions ne', Te', Ex"’ Ey" are assumed fo

possess Fourier decompositions for which typical components are

i(~0t + KX + K, y)
n" = fe o, (4-6)

!

where n again represents N Te, Ex

, Or Ey’. The Fourier amplitudes

ftat
.

are denoted by The frequency of the Fourier components is w, and

Kx’ Ky are the components of the wave number K. When the Fourier com-
ponents (4-6) are substituted into the system of non-steady equations,
there results a |inear homogeneous algebraic system. The condition for
non-trivial solutions leads to a dispersion relationship between w and
Kx’ Ky. I f the dispersion condition admits complex frequencies w with
positive imaginary parts for real ?, the perturbations grow in time and
the equations are therefore said to be unstable.

Before proceeding with the substitution of the Fourier components,

it is useful to nondimensionalize the non-steady equations which have

been expanded in terms of the perturbation quantities n ', T_', Ex"’

Ey" . For this purpose, characteristic dimensional quantities are Ng »
©

Te s Eo' = |E°'|. A characteristic length is selected as K™} =
<]

I/VKX2 + Ky2 and a characteristic time as wr'l, where W is the real

part of w. Nondimensional quantities are then defined as

" ! = [ [ = !
Ne = e /neo’ T; - Te /Teo’
E = Exn /Eol’ _E'yn = Eyn /Eo',
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K = K /K, K = K /K.

The non-steady equations in nondimensional form [Eqs. (2-7), (2-8),

(2-30) and (2-31)] with U directed parallel to the x axis are then

Electron continuity:

) 3| — n* -
T e — + uK — ne' -2 |— Te' - ne' = 0, (4-7)
T ot 5% T
e
| Electron energy:
:
|
| d dl|l—=, . =,
T { w ==+ uK —{le n + Te - (sz) (cos 6§ +
: S R T 3% e
an’ on_’
’ + Bo sin &) — - (sin 6 = B, cos §) :_ +
X ay
(4-8)
oT !
+ %—(cos § - Bo sin &) f_ + %-(B° cos 6 +
ax
BTe' T = n
. " .
+ sin 8) —=—(} - wg |2(cos8 E " + sin§ E ) +
3y
9 ! v
+ Eo 7 + T ' - (gK)2 V2T !,
on e ©
e
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Current conservation:

in tThe above equations,

§ = tan~l(E '/E_"),
y X

~
It

2
{/a N~

™ |
]

+ 2;i/3kTe,

wg = (Te/T-l)fE,

I
Ty = m,, E’
Z m. Vej
J J

k(T ~-T)
e

= o
b F —eem—— e
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(4-10)

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)

(4-16)




A

2 = _____ & -
WO TUF B2ven_ fer (4-17)
where
! (4-18)
fE = 3 n vy
| -y E?2 ——E
E BTe

It is to be understood that the quantities defined in Eqs. (4-11)
through (4-18) are to be evaluated at the steady state Ne » Te , Eo’
<] (=]
when used in Egs. (4-7) through (4-9).

The nondimensional FE' 5& are obtained by nondimensionalizing FE’
GE given by Egs. (2-23) on E,', ey’ and Teo' The operator V2 repre-
sents the Laplacian nondimensionalized on h. It is to be noted that
the time Ty is proportional to the equipartition time between the elec-

trons and the heavy species. Terms proportional to &, represent heat

d
conduction and diffusion due to electron pressure gradients. Terms pro-
portional to zq represent temperature gradient induced heat conduction
in the electron fluid.

The Fourier components (4-6) may be substituted into Egs. (4-7)
Through-(4-I0). In terms of the nondimensional frequency

vV = -0+ KXx
Vo w 9

there results the following |inear, homogeneous, algebraic system:
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_ an ¥
itiw v+ 2 -2 — 0 0 ﬁe
r oT
e
A B —ZwE cos § -ZwE sin & Te
= O’
¢ D iK iK E
X y P
0 0 iK -iK E
L Y x JUY)
where
s n vy
4 = itotwv -k - o —Fo
er d'd E -
an
e
_ - _ 7 22
B = |(Tewrv 7K2dAd) + (I + 2 _“K%),
c = -Key 4 |['F‘E(ne)Kx+GE<ne)+<y],
D = Koy + i FE(T )KX + GE(Te)Ky],
and
AZ = R;(cos § + Bo sin &) + R&(—Bocos § + sin &),
- % ) ) _ y o .
Ad = Kx(cos S Bo sin &) + Ky(Bo cos § + sin &)

The dispersion relationship follows by requiring that the determi-
nant of the coefficient matrix vanish for nontrivial solutions. The

result is the quadratic
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av2 + 2bv + c = O, (4-19)

where
a = (Timr)(rewr), (4-20)
(1.0 _ onX 2
b = -i -——7-—QTe + (remr) | + €, = - Z-szAd, (4-21)
e
5 - an ¥ _ , . _
c = =20 + |(K2d) §'Ad + 2 —;%f soAd - 2wE(KX cos & +
e
(4-22)
+ K sin a)].
Y
The functions QT , Qn are guadratic forms in R;, R;;
e e
Q = A K2 + 2B KK + C K2, (4-23)

where n stands for either Te or n,. With the definition of a logarith-

mic derivative operator An’

3 m ()

An( ) 2 ne ! (4-24)
the coefficients in Eqs. (4-23) are
A, cos?s
= 8+ 2w_|A _(0,) £ BolA _(0,) + A (B)Jcosésing|,

C n E B sin2s no8 n

n (4-25)

. B 2 .
Bn = ZwE{An(oB)c0565|n6 + 7§EAn(°B) + An(B)] (cos 6—5|n26)}
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where

- 212
eTe = | + Rq K<,
(4-26)
) 3 n YEo
en = Y% -
e an
e

The quadratic form Q is defined as

The conditions for negligible heat conduction and diffusion are
(QqK) << | and (sz) << |. In what follows, these effects will be neg-
lected, and the effects of finite rates of ionization will be considered.
(Some of the consequences of heat conduction and diffusion have been ex-
amined by Kerrebrock 22, while Dethlefson and Kerrebrock3! consider the
case of stability with Saha equilibrium.) For this case, Egs. (4-20)

through (4-22) reduce to

a = (t.w)(t w), (4-27)
iTr’ e r
Tl _ am
b = ~i|l——=— + 10 |l + € , (4-28)
2 er 3T
e
c = =20Q. (4-29)

The solution for v is
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where b, = Im(b). Since V= -G+ KX it follows that for b * + ac > 0,

= . (4-30)

Since it is true that a is always positive, it follows that for ¢ > O,
there is always one root for which w, is positive; hence for stability
(wi < 0), it is required that bi < 0and c < 0. On the other hand, if

biZ + ac < 0, it follows that

<|
]|
1

-

a
and
w, b.
L = L, (4-31)
w a
r

The condition for stability is again bi < 0. The stability conditions

are thus, from Eqs. (4-28) and (4-29),

1907 am_*
e

2 er oT
€ (4-32)

The quadratic form Q may be expressed as
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(4-33)

(4-34)

X Xy y
where
on _*
A = A + A,
Te 5T e
e
and similariy for B and C. The stability condition requires that the

quadratic form Q be positive definite.

the

case for all K , K if
X y

In terms of the operator

and

the

The

3 n ne*
b, C) = b () 4 ———— (),
Te aT; Ne
the definition
\ ) ZwE
2
E wE + fE

condition (4-35) may be written as

XEB

2
o+ Aphelog) - {—Z—J [axlog) + A, (B)]%2 > O.

above inequality may be rearranged to yield
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(4-35)

(4-36)

(4-37)
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I+ AEA*(UB)

) + A, (B)]?

82 < 4

4 (4-39)
AEZEA*(O

B

When the mobility u is uniform, A*(OB) = Ay(o) and A,(B) = 0. The in-
equal ity (4-39) then becomes an explicit inequality for B. This condi-
tion contains the stability criterion of Dethlefson and Kerrebrock3! as

a special case. The instability which arises when the inequatity (4-39)

is violated has been termed an "electro-thermal" instability by Kerre-
brock. 22
As an illustration, assume that the mobility u and energy exchange

coefficient 8 are weak functions of the electron temperature so that

A (B) = 0 and

A*(OB) = —_— (4-40)

From the Saha equation (2-22) and the energy equation (4-2) it may read-

ily be shown that for these assumptions XEA*(O ) is always less than

B

Ei/4kTe , where €, is the energy required to singly ionize an s species
o
atom. The right hand side of the inequality (4-39) is a monotonically

decreasing function of A_A,(c ). Inserting the maximum AEA*(O ) =

E B B
Ei/4kTe info (4-39), the condition for stability becomes
o

f + e.,/4KT
i €o
(e./4KT )2 °
| e

o

B2 < 4 (4-41)

In The absence of a magnetic field, the inequality (4-41) is always
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satisfied. In the absence of nonequipartition heating, Ao = 0, and

E
according to inequality (4-39) stability again prevails. Thus, with
uniform mobility and energy exchange coefficient 6, instabilities may
develop only with the simultaneous occurrence of the Hail effect and
nonequipartition heating. If either of these effects is absent, the
equaTions’are stable. The inequality (4-41) places rather severe res-
trictions on 8. For an alkali metal such as cesium or potassium at a
gas temperature of 2000°K, ei/4kTe° ~ 5, and the inequality (4-41)
therefore requires B2 < 24/25.

From the solutions of (4-19) the growth rate of the disturbance is

determined from

= , (4-42)

or
ZQTiTe
(a.1. + a Te) A G T t a1 2
w, = - L ee , (4-43)
! T.T
i e
where
_an *
a, = QT /2, a, = I+ €0 — (4-44)
e ETe




and the growth time 1 = v, ~! becomes

ae
T > - ||t . (4-45)
e

The growth time is thus proportional to the effective energy transfer

time Ty Near the frozen limit (ri >> re)

The growth time 1 = wi_l in this limit is thus proportional fo the ioni-

zation time T

S I (4-46)

It can be seen that the controlling growth time is the longer of T, and
T and that the damping or growth of the disturbance is confrolled by

the sign of the quadratic form Q. (It should be noted that the coeffi-
cient ag is always positive and that the coefficient ai, which involves

the quadratic form QT will generally be positive; indeed, if the mo-
e

bility u is assumed independent of electron temperature and if electron

heat conduction effects are negligible, 0 = 1)
e

4.2 Static Instabilities in a Nonequipartition Plasma

It can be seen from Eq. (4-12) that the conductivity gradients tend

to become infinite if

79



9 n YE

12 = -
veE 3T, JouToeeoun, X (4-47)

This condition is indicative of a phenomenon which Kerrebrock! has des-
cribed as a "static instability". Physically, such an instability may
appear when an increase in the temperature of the electrons causes the
energy transfer to the heavy species in the gas to become less efficient.
(This may occur for example if the average electron-heavy particle col-
lision cross section decreases with an increase in the electron temper-
ature. Thus, the electron femperature continues to rise as the colli-
sional energy loss rate to the heavy species decreases.)

Since E'ZYE = Te - T is a positive quantity, the static instabilt-

ity may occur only if (3 n YE/BTe)p T n is positive. A sufficient
R I
e

condition for static stabilify of the conducting gas is then

3 n Ye
(Te - 7T, T hno < I, (4-48)
e p) )"'Ie
As an illustration, assume that the momentum and energy transfer

from the electron fluid are dominated by elastic collisions with a single
heavy species which is denoted by a subscript 2. According to Eq. (2-33)

the energy exchange coefficient is proportional to v thus Yg = os/ene

ez;

is proportional to Veg-z' To a good approximation, the collision fre-

quency v, may be expressed as v_, = neQeQCe’ where Ce is the electron

el

is an average momentum transfer cross section.
1

Since Eé is proportional to Tea; it can be seen that YE is proportional

mean thermal speed and Qez
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to Q,, 72T, 7!, and thus it follows that

( \
BmeE =_28,moe£_l
3T, |euTseeeun, 3T, T,

If the cross section increases with Te for all Te’ the conducting gas
is statically stable; on the other hand, if the cross section decreases

with Te’ the gas is statically stable if

9 n Q 9 n Q
el es

In particular, if the heavy species considered is the ion fluid, where

Qei is proportional to Te‘z, the above condition becomes Te/T < 3/2,

4.3 Type of the Steady Equations

An analysis of the type of the steady equations governing nonuni-
form conduction with a nonequilibrium conductivity is now presented.
Such an analysis of type of the steady equations will bear upon the
method of solution employed and the proper specification of boundary
conditions.

The steady equations for the linear channel geometry described in
chapter 2 are now considered. Attention is restricted to the case with
negligible pressure gradient induced diffusion of charge and a velocity
U directed parallel to the x axis.

To facilitate the examination of type, a matrix notation will be

employed. Let the vector wj have components (ne,Te, Ex', Ey'). Then
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Egs. (2=-30), (2-31), (2-21), and (2-8) with the time derivative set

equal to zero may be compactly written as

ow . oW,
=L + B . =L + c = o (4-49)
ij ox ij oy [

where a repeated subscript implies summation. The coefficient matrices

Aij’ Bij and the vector Ci in the field representation are

u 0 0 0
(ékT + e.)u ékn u 0 0]
27 e i 2 e
A.. = s (4-50)
J
FE(ne) FE(Te) f 0
{ 0 0 0 -1
(0 0 0 0
0 0 0 0
.= , (4-51)
rJ
GE(ne) GE(Te) 0 J
{ 0 0 | 0
x2 _ 2 A
ane(ne ne )
_ - ry2
ene(Te T) cB(E )
cC. = . (4-52)
i
e
g 0 J
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The type analysis of the system (4-49) proceeds (see, for example,

Courant and Hilbert,32 p. 176-177) by forming the matrix
- MB.. (4-53)

and determining the characteristic directions X from the condition

Det(A.,. - AB..) = O. (4-54)
J N

If there are p distinct real values of A which satisfy Eq. (4-54), where
p is the number of components of wJ, the system is said to be totally
hyperbolie. |f there are p non-real values of A which satisfy Eq. (4-54)
the system is said to be elliptie. If the polynomial (4-54) for X is of
order less than p, the system is said to be parabolic. Using the forms
for Aij’ Bij given by Egs. (4-50) and (4-51), the condition for A is

Uo? %kn (1 +22) = 0,

€o

which is degenerate in A. The system is therefore parabolic.
The case in which the convective term uane/ax is negligible in the
energy equation is examined next. For this case, the energy equation

may be written as

T, = T+YE(E')2. (4-55)

Since the energy equation is now purely algebraic, the derivatives of
Te may be calculated in terms of the derivative of E'. Using Eq. (4-55)

and observing that Ye is a function of Te’ there results for the deriva-
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tive of Te (for £ = x or y)

3T, ' 2v¢ 3E ' 3E !
= U ! Y -
I = Yy (EN)2 ———
£ 3T

In the matrix formulation, wJ reduces to wJ = (ne, E

coefficients Aij’ Bij become

', E ') and the
X Y

u 0 0 )
i = ==
AiJ = |Fein) |+ AEFE(Té)cosé AgFe(T)sing |,  (4-57)
( O 0 -1 )
(0 0 0 )
Bij = GE(ne) AEGE(Te)cosd |+ kEGE(Te)SInd , (4-58)
. O | 0 )

(4-59)

In the above, § and \. are defined in Egs. (4-11) and (4-37). The con-

E
dition (4-54) is now
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ax2 + 2bA + ¢ = O, (4~60)

where

a = -[I + kEﬁé(T;)sinGJ,
o = = =

b = 7—kE[stnG FE(Te) + cosé GE(T;)]’ (4-61)
c = =[I + AEFE(Te)COSGJ.

This condition is degenerate in X; hence, the system is again parabolic.

The case in which the convection effect in the electron continuity
equation is negligible as well as the convection effect in the energy
equation is now examined. The electron continuity equation reduces to
the Saha equation (2-29) and thus

an an *(T ) a7
e e e

e = -
T - 5T, 3 (4-63)

The vector wJ is now wJ = (Ex', Ey') and the coefficients are the same

as those in the lower right hand corner of (4-57) and (4-58) with FE and

- = T =
GE replaced by FE (Te), GE (Te), where

FXT ) = FATH) +  Fo(n) , (4-64)
e e

and similarly for EE*. The characteristic directions A for this system

are determined by Eq. (4-60) where the a,b,c, are given by (4-61) with
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Fe, G replaced by F*(T)), EE*(T;). The system is no longer degenerate

in A. The solutions for :\ are real if
b2 - ac > O. (4-65)

This condition is

|
b2 = ac = - {1 + Adyglog) - (QAEB)ZEA*(UB) + 8,(8)]} > 0,(4-66)

B)
where the coperator Ay, is defined by Eq. (4-36).

in this case, in which the electrons are in ionization equilibrium
at the local electron temperature, the Maxwel!-Faraday, current conser-
vation, and Ohm's Law equations may be compacted into a single second-
order equation. This may be done in either the field or current repre-

sentation by introducing the potential and flux functions @', ¢ [Egs.

(2-5) and (2-6)]. The quasi-linear second-order operator LE may be de-
fined as
. 32 32 32 ) d
e = Mgzt Begagy Y Cenz t Peax toBegy - 4007

The system (4-49) may then be written as

LE(Q') = 0, (4-68)
where
A cos?8
= |+ A|bkloy) t BlAx(o,) + Ax(R)]cosbsing|, (4-69)
E B . B
CE sin<é
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and

B = AE{A*(oe)cosésinG + %[A*(UB) + 8,(B)cos?s - sin2s]},
Dg = (a1 (4-69)
e’ e
Ec = (rE)n T
e’ e

The same system may also be expressed in the current representation.

The energy equation in the current representation is

= 2 -
Te T + yJJ , (4-70)
where Y) = I/oene. The counterpart of Eq. (4-56) in the current repre-
sentation is
o7 2y [ ay X
e _ J X Y .
3E = T Y] Jx 3E + Jy 5E ]. (4-71)
- 2
S Py
e
A second-order quasi-|inear operator LJ may be defined as
- d 32 32 ) 3
L\J = AJ et ZB\J Ixay + C‘J 7z + DJK + EJE)_y_’ (4-72

so that in the current representation, fthe system (4-49) for negligible
heat conduction, convection, and pressure gradient induced diffusion

becomes

LJ(w) = 0. (4-73)
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Following the same procedure used in developing Eqs. (4-69), there re-

sults
A A J 2
Woe o 2,2 7L 7 slago - a0},
2 2 Xy
C J J
J X
)\J { B
B, = == {84a)d J - F[Ag(0) = 8,(R)JWJ 2 -J )
J g2 o Xy 2= * X Yy ' (4-78)
DJ ) (qJ)n , 77
e’ e
EJ = (rJ)n T
e’ e
where
2y J2/T
- J e .
)\J = T Y (4-/5)
| =y 2 e
AN X
e
Equations (4-68) and (4-73) are second-order quasi-linear differen-

tial equations whose type depends on the positivity of negativity of the

discriminant
D = BZ - AC, (4-76)

where A,B,C are the coefficients in (4-67) or (4-72). When D < 0, these
equations are elliptTic, and when D > 0, the equations are hyperbolic.
It is readily shown that in either representation BZ - AC = b? - ac

consistent with the correspondence between a system of ftwo first-order
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equations and a single equation of second-order constructed from the

The condition of uniform ellipticity is thus, from Eq. (4-76),
|
I+ Aghylog) - (E-AEB)Z[A*(OB) + 0, (8)]% > 0, (4-77)
or
I+ by (o)
82 < 4 E” 8 : (4-78)
AEZEA*(OB) + Ay (8)]2

It is to be noted that in the absence of convection effects in the
electron continuity and energy equations, the condition for uniform el-
lipticity presented above is precisely the same as that for the preven-
tion of the electro-thermal wave instability discussed in section 4.1.
|+ appears, therefore, that steady state solutions of the nonuniform
conduction equations (4-68) or (4-73) when they are of hyperbolic type
would be physically unstable.

in the event of uniform ellipticity, the boundary conditions are of
the conventional Dirichlet or Neumann type discussed in Courant, Hil-
bert.32 A discussion of the uniqueness of the solution with such bound-

ary conditions is presented in appendix B.
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5. NONUNIFORM CONDUCTION WITH A NONEQUILIBRIUM
CONDUCTIVITY: IONIZATION EQUILIBRIUM

In this chapter detailed numerical solutions are obtained for the
distributions of current, potential, electron number density, and elec-
tron temperature in a finitely segmented channel with nonequipartition
electron heating. The electrons are assumed to be in Saha equilibrium
at the local electron temperature. The internal impedance and Hall
voltage for the Faraday mode of operation are compared with the results

for infinitely fine segmented electrode channels.

5.1 Nondimensional Steady Equations

When electron pressure gradients are neglected (En << E") and heat
conduction and convection effects are neglected in the electron fluid,
the governing equations for the potential ¢’ and the flux function

were shown to be

LE(Q') = 0, LJ(w) = 0. (5-1)

The operators L LJ are defined in Eqs. (4-67) and (4-72) and contain

E’

the electron temperature and number density. The electron energy equa-

tion in the field representation is

- r1y2
Te = T+ YE(V@ )<,
and in the current representation (5-2)
= 2
Te = T+ YJ(Vw) .
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The
tt

e electron

number density when Saha equilibrium prevails at the local
electron temperature is given by

1

* = - 2 -
n Lin, = np) K(T] (5-3)

o

where ng is the number density of ionizable seed atoms.

[+

These equations and variables may be made nondimensional by intro-
ducing in addition to a characteristic voltage Vo, and current I, a

characteristic temperature T, and number density n_ where

€o

3
il

n;(To).

| f nondimensional variables and operators are defined as

o= ey, v o= /I,
T =2 Wl T, 2 T/To Mg = n/ng
T, = hLg L =y
X = x/h y = v/

then the foregoing equations may be writtfen as

IE(E') = 0, Ih(ﬁd = 0, (5-4)
= T 29 )2 7112 (5-5)
Te = T + we ﬁ—) + [W—) P -
w 2 2W
- = J oy [aw
= 4 — — + - » (5-6)
Te T 2 [ax L9y
e 7/

9l



2 - “lee-l _ 7 T T -
Ng f7h s Ng Mo T2 exp ( ei/Te). (5-7)
In the above,
f = n /n_, €, = ¢./kT,,
eo So [ |
ne = K(To)/n o = OV
° 7 g, E eneTth ’
2
o, - 0l

oozeneToh2

It is to be noted that if the electron mobility u and the energy ex-
change coefficient 6 are insensitive to the changing the electron tem-
perature, Then wg and wy may be assumed to be constants.

in the field representation it is appropriate to select Vo = V; ,
the actual induced voltage across the fransverse electrodes which exists
for a given gas velocity, magnetic field strength, and external load.

The parameter w_ then possesses a useful physical significance when the

E
electron mobility and energy exchange coefficient may be assumed uniform.
If the channel is infinitely finely segmented and T; = 0 (Faraday mode)

and no nonuniformities exist, the solution of the first of Eqs. (5-4) is

30!
- B,
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Since the gas temperature is uniform at T,, it follows that T = | and

T, To

“’E = T— . (5-8)

The parameter We thus represents the electron temperature rise in an
infinitely fine segmented electrode channel with constant voltage V;
for the given physical parameters n,, E}, and f.

In the current representation the current I, is selected as I, = Iy,
the actua! current flowing across the ftransverse electrodes. I{f the

channel is infinitely finely segmented and T; = 0 and no nonuniformities

exist, the solution of the second of Eqs. 5-4 is

= -h/2, ¥ - .
ay

Wl
xij<|

w . Y2
T - T = -‘L[ﬂl . (5-9)
e FZ L
e
Since the gas temperature T is uniform at To,, it follows that T = | and
2 1T -7
_ (L e °l -2
wj = (F) *——T—o-—‘ ne . (5-10)
Thus, w, represents the product of the nondimensional temperature rise

and the square of the nondimensional number density rise in an infinitely
fine segmented MHD channel with a constant fransverse current Iy' On

comparing Egs. (5-8) and (5-10) it can be seen that

93



where V,, which appears in wp and W, is to be interpreted as the volt-

age which causes a current I, to flow with conductivity oo: Vo = Io-%.cgl.

In terms of the function ;(T;), defined as

3
- _ =7 - = _
c(Te) = 1, Te exp ( ei/Te), (5-11)

the electron number density may be explicitly written as

21
e =
I+ v/ 1 + 4/c(Te)

>
"

(5-12)

The iogarithmic derivative of ﬁ; which appears in the operators L, t}

is

T
3,2
A

e . (5-13)

1
T_-
e

e - c(Te)
2

I+ vV | + 4/;(Te)]

The boundary conditions in nondimensional form are identical to those

given in Section 3.2.1.

5.2 Potential, Current, and Electron Temperature Distributions

In illustrating the effects of finite electrode segmentation with
nonuniform Joulean heating and a nonequilibrium conductivity, the energy

exchange coefficient 8, electron mobility u, and gas state variables
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PyT,... will be assumed to be uniform. The femperature T, is selected
as this uniform gas temperature so that T = I. As a typical case, these
parameters are fixed at their values for equilibrium gas conditions
typical of a slightly seeded cesium-argon mixture at one atmospheric
pressure, T, = 2400°K, mole seed fraction of 0.004, and an effective
field V;/h = 40 volts/meter. For these values, wg v 0.5. The geomet-
rical parameters are selected as %/h = 1, a/2 = 0.5. With the assump-
tion of uniform mobility, the gas is always statically stable in the
sense of inequality (4-49); however, the condition of uniform ellipti-
city (4-78) requires B < 1.09. The Hall parameter B8 will *herefore be
set equal to 1.0 for the purposes of studying only uniformly elliptic
solutions of the steady equations. This choice of B allows a modest
Hall effect without exceeding the criterion for uniform ellipticity.

The solutions of Egs. (5-4) and (5-5) or (5-6) subject to the
boundary conditions (2-36) and (2-37) or (2-38) are obtained numerically
(c.f. appendix A). The current and potential fields for the above con-
ditions are shown in Figs. 5-1 and 5-2 for the case Ix = 0. It can be
seen that the effects of nonuniform Joulean heating have generally dis-
torted the current distribution shown in Fig. 5-1. This current dis-
tribution may be compared with that when the conductivity is uniform
shown in Fig. 3-6. It may be noted that with uniform conductivity the
current flows at an angle very nearly equal to tan~1(h/a) in the core
of the gas; however, with nonuniform Joulean heating, the current flows
very nearly at the Ha!l angle tan=1(B). It may also be noted that the
disturbance of the flow in the core by the finite segmentation pene-
trates more deeply into the core with a nonequilibrium conductivity than
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with a uniform conductivity.

The cumulative distribution of current on the electrode with non-
equipartition heating is shown in Fig. 5-3. It can be seen that the
current density is intensified at the right-hand singularity compared
to the uniform conductivity case; indeed, this distribution is similar
to the distribution with high conductivity layers (Fig. 3-8),

The potential ¢’ is shown for this case in Fig. 5-4 and may be
compared with that shown in Fig. 3-10 for uniform conductivity. It may
be noted that the parallel potential lines in the interelectrode region
indicate that the Hall field E; has been effectively shorted out in this
region by the nonuniform Joulean heating. This effect is consistent
with the fact that the current in this region flows nearly at the Hall
angle. The variation of the potential @' along the insulator wall is
shown in Fig. 5-4 where it is contrasted with the case for uniform con-
ductivity. |t can be seen that the total rise in potential along the
insulator is below that for uniform conductivity. The rate of growth
of the axial potential along the insulator is also less than that with
a uniform conductivity.

The electron temperature distribution is shown in Fig. 5-5. It
may be seen that high temperature zones occur over the singular points
at the intersection of the electrodes and the insulators. It may be
noted that a plateau of nearly uniform electron temperature Te/T = 1.40
exists whose axis in the core lies approximately at the Hall angle.
This electron temperature field may be contrasted with the Joule heating
field J2/c for uniform conductivity shown in Fig. 5-6. |+ may again be

observed that the disturbance created at the singular points at the
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Fig. 5-3 Electrode current distribution with nonequi-
librium conductivity; B =1, &/h =1, a/2 = .5,

€ =20, wo = .5, 1 =0
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Fig. 5-6

Electron temperature field
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electrode~insulator intersection penetrates more deeply into the core
with nonuniform Joulean heating than with a uniform conductivity.

By virtue of the assumed Saha equilibrium at the loca! electr
temperature, the electron number density is directly reflected in the
electron temperature field. This temperature field possesses signifi-
cant nonuniformities in the axial direction as well as in the transverse
direction. Note in particular that there always exists a region in the
axial direction where the electron heating vanishes (the current stag-
nation point on the insulator) and a region where the electron tempera-
ture in the absence of other dissipation effects is infinitely large
(the singular points at the electrode-insulator intersections). Thus,
for values of B of the order unity, there is no evidence of a highly
conducting but axially uniform "shorting" layer over the insulators
separating the electrodes. This result may be contrasted with the model
treated by Kerrebrock!9:,2% in which such a layer is postulated with a
correspondingly large deterioration in channel performance. It should
be pointed out, however, that such detericration effects in the Kerre-
brock model do not occur until Hall parameters considerably larger than
one are reached. The conductivity model treated here, however, would be

in the range in which the electro-thermal wave instability would be

present for such |large values of Hall parametfer.

5.3 Internal Impedance and Hall Voltage

The combined effects of finite electrode size and the resulting
nonuniform Joulean heating lead, as for other nonuniformities, to an

increased transverse impedance and a depressed Hall voltage. For the
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uniform conductivity case with finite electrodes (2/h = |, a/% = 0.5,
g =1, VH = 0.45; but if nonuniform Joulean heating occurs with the
electrons in Saha equilibrium at the nonuniform electron temperature,
the Hall voltage for this example is reduced to Vh = 0.36. The tfrans-
verse impedance and Hall voltage with nonuniform Joulean heating are
compared to fThose for continuous and infinitely fine segmented channels

at the same gas conditions with the same effective field, V;/h = 40

volts/meter in Table 5-1,

TABLE 5-1

Electrode configuration and ﬁ} =R /R (0) Vh = Vo /O haa
conductivity model [ASNRA/

tdeal continuous with non- 0.30 0
equilibrium

ldea! segmented with non- 0.05 .0
equilibrium

Finite segmented with o=0, .60 0.45

Finite segmented with non- 0.12 0.36
equilibrium

It can be seen that the impedance is markedly higher than that for ideal
segmented conductors but still somewhat below That for continuous elec-
trodes with nonequipartition electron heating.

In Fig. 5-7 the effect of the departure of the electron temperature
from the gas temperature for a fixed Hall parameter of unity is shown.
IT can be seen that the internal impedance relative to the internal im-
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pedance of an infinitely fine segmented electrode generator increases

as the electron temperature is allowed to respond to the Joulean heating
and reaches a maximum near values of weg corresponding to maximum nonuni-
formity. As wg is increased further, the gas becomes more fully ionized
and hence more uniform. The ratio of the actual impedance to the ideal
segmented impedance begins to decrease back towards its value for uni=-
form conductivity. The Hall voltage behaves in a corresponding fashion.
As the departure of the electron temperature from the gas temperature
increases, the higher conductivity near the edge of the electrodes and
insulators decreases the Hall voltage. As further departures are al-

lowed, the gas begins to reach full ionization of the seed and the Hall

voltage begins fo increase towards its uniform conductivity value.
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6. FINITE RATE IONIZATION AND RECOMBINATION
IN PERIODIC TEMPERATURE FIELDS

In this chapter the effects of finite rate ionization and recombin-
ation on the model discussed in chapter 5 are examined. The presence of
such finite rate effects is shown to be suggested in the experimental

28  ogualitative observations about the manner in

results of Fischer.
which finite rate effects would be manifested are presented. These ob-
servations are rendered more quantitative by a caleulation of the number
density response with finite rate effects to spatially periodic steady
one~dimensional temperature disturbances. Such disturbances would be

characteristic of the "hot spots' in segmented electrode channels due to

current concentrations.

6.1 Electron Number Density Antisymmetry with Hall Effect and Finite

Rate lonization

In chapter 5 it was shown that for the orientation of the magnetic
field shown in Fig. 2-| regions of very high electron temperature cor-
responding to large concentrations of current develop assymetrically af
the leading edge of the upper electrode and at the downstream edge of
the lower electrode. When the electrons are allowed to achieve Saha
equilibrium at the local electron temperature, these regions of high
electron temperature directly reflect regions of high electron number
density.

The equilibrium electron number density distribution may be dis-

turbed by gas dynamic convection if the recombination frequency is not
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large. Under such circumstances it may be concluded that the electron
number density which would tend to develop at the "hot spots" under
equilibrium conditions will fend to be distributed preferentially in

the downstream direction when convective nonequilibrium effects are pres-
ent. Thus, near the electrodes, it would be expected that the electron
number density at the upper electrode would be higher than the electron
number density at the lower electrode. This is because the electrons
generated at the lower "hot spot" are immediately convected over the
adjacent insulator segment whereas the electrons generated at the upper
"hot spot" are immediately convected over the upper electrode. Such an
effect in a linear MHD channel has been observed by Fischer.2® In Fig.
6-1, Fischer's measurements of the radiation intensity distribution be-
tween an electrode pair along a line intersecting the midpoints of the
insulators is shown. The plasma for this case was generated in a I35
m/sec, 2100°K potassium-seeded argon flow. This radiation intensity is
proportional to the population of an excited potassium state; however,
because of the convective nonequilibrium, it is not clear that this state
is in equilibrium with either the electron temperature or the electron
number density. The radiation is probably an index of both temperature
and number density effects. |+ can be seen that the intensity is higher
along the insulator wall which is immediately downstream of the "hot
spot" than along the upper insulator wall which is immediately upstream
of the '"hot spof". A reversal of The.curren+ (and hence the cathode and
anode) has little effect on this distribution; thus, electrode sheath

effects do not appear to be dominant.
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Fig. 6-1 Radiation intfensity measurements of Fischer along a

traverse across the channel intersecting the midpoints

of opposed insulator segments
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6.2 Recombination Times and Residence Times in Flowing Noble-Gas,

Alkal i-Metal Plasmas

The foregoing observations may be rendered somewhat more precise
by calculation of the magnifude of convective nonequilibrium effects ex-
pected in a segmented electrode MHD channel. In the range of operating
temperature anticipated for alkali metal seeded noble gas MHD generators
(approximateiy 2000°K) the recombination is principally of the three-body
type. A theory for three-body recombination has been given by Hinnov
and Hirschberg.?“ |f the net rate of production of electrons is denoted
F\e, then

n. = an (n *2 - n2), (6-1)
e e e e

where o is the recombination coefficient and ne* is the equilibrium

number density at temperature Te; the recombination frequency is

v = an_ ‘. (6-2)

In appendix C values of v for various values of Te and ng are calcula-
ted according to the theory for a(Te) of Hinnov and Hirschberg. In par-
ticular, it is shown that the recombination frequency in a 2000°K plasma
seeded with a few tenths of a percent of alkali metal vapor is of the
order of 103 sec™!. For a plasma flow of approximately 100 m/sec (which
would represent a iower |imit of veloéiTy for MHD generators) and an
electrode of | cm in length, the plasma residence time over the electrode
is of the order of 10™" sec. Since the corresponding time for ionization

or recombination is only 1073 sec, it can be seen that convective non-
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equilibrium is easily achieved in such iow eiec

mas.

6.3 Electron Continuity Equation with lonization and Recombination

A study of one-dimensional nonuniformities in electron temperature
and number density will now be made with the aim of obtaining a more
precise evaluation of the decay and response of the electron number den-
sity To periodic temperature hot spots. The steady-state electron con-
tinuity equation from section 2.3 for a velocity U parallel to the x

axis and independent of x with negligible ion current is

U=—— = an (n *2 - n 2), (6-3)
e e e

From the work of Hinnov and Hirschberg,2"

9
a(T) = 5.6x|0'27<kTe)'7} (6-4)

where kTe is expressed in electron volts. The electron continuity equa-
tion may be nondimensionalized on characteristic values Ng. s To, and
o

period length & to become
u—— = o n_(n - n_<), (6-5)

where

=1
H
3
~
3
-
3
|

¥ = n*XT)/n_,
e e’ e, e e e’ e
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T o= u/ev, o = alT)/alTe) = (T /To) 2,

X = x/4%.
The recombination frequency at the reference ftemperature is v =
a(Tc)ne*z(To). The periodic boundary condition for Eq. (6-5) is

nxX+ 1) = n(X). (6-6)
e e

Since &/u represents the average residence time of the plasma in the
period of length &, and I/\)r represents The average time between recom-
bination events, it can be seen that the parameter U represents the ra-
tio of the recombination time to the plasma residence time. Thus, when
U + 0, the electron number density is in equilibrium in the section of
length %, and when U + =, the electron number density is frozen in the

section of length 2.

6.4 Spatially Periodic Solutions of the Electron Continuity Equation

In appendix D it is shown that the nonlinear rate equation (6-5)
may be transformed into a l|inear equation, and that the solution of Eq.

(6-5) subject to the boundary condition (6-6) is

—_— — ~ 1

| e-k(x)/u o
v = - X -7
Ng = |F(x) + ARV FC1) ’ (6-7)

u | - e
where
= = X = = *2I'T -

AX) = 2 £ o [Te(n)]ﬁé [T, (n)Jan, (6-8)
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FX) = 2{" E[Temﬂe'[“"‘) - Ay, (6-9)

It is shown (appendix D) that in the frozen |imit where U > =, the solu-

tion (6-7) becomes

L
fl an *2 i
a n_*cdn
n,o= | . (6-10)
IO o dn

Thus in the frozen {imit, the number density becomes uniform in the ax-
ial direction x and is equal to a root mean square average of the Saha

number density weighted against the recombination coefficient.

6.5 Number Density Response to Spatially Periodic Temperature Pulses

As an application of the foregoing results, consider a model of the
high ftemperature zones which occur periodically at the intersection of
the insulators and electrodes of a segmented magnetohydrodynamic channel.
A simple model of such an effect is an electron temperature pulse of the

form shown in Fig. 6-2:

r a-§
Te,? 0 < xs ==
_ a-6 a+é
TeX) = Ty » 5 x5 (6-11)
max
a+é
Teo, —2—-5 X < %

where § represents the spatial extent in the axial direction over which

the pulse extends and Te represents the temperature within the pulse.
max




Regions of high
dissipation and large
electron temperature

e
max

»
N

Fig. 6-2 Periodic temperature pulses in a finitely segmented MHD

channel
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The temperature over the remainder of the insulator and electrode is se-

lected at the reference temperature and is denoted Te
[+]
The electron number density response to such a temperature distribu-

tion is shown in Fig. 6-3 for various values of the parameter u, for

§/2 =0,2, T /T = 1.5, €./KT_ = 20, The equilibrium limit (u = 0)
Cnax  ©° i’ ee

and the frozen limit (U > ») are to be noted. It can be seen that as u
is increased, the electron number density responds less sharply to the
temperature pulse and aiso decays less sharply. This effect tends to
spread the region of high electron number density over the insulator re-
gion on the downstream side of the temperature '"hot spot".

It should be noted that with values of u as high as 10 or 20 (rep-
resenting the ratio of ionization time to residence time), the electrons
are still a large degree away from their frozen value; indeed, it appears
that values of u 2 200 are required before the fluctuation in electron
number density is less than 10% over the period.

In Fig. 6-4, the average value of the electron number density deno-
ted <Fé> in the range 0's X s | is shown as a function of u. The frozen

limit value n and the average equilibrium value <F;*> are also
frozen

shown. |t may be observed that the maximum value of <ﬁ;> occurs for

un .
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Fig. 6-3 Electron number density response to periodic temperature

pulses
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7. NONUNIFORM ELECTRICAL CONDUCTION WITH
A NONEQUILIBRIUM CONDUCTIVITY:
FINITE RATE EFFECTS

In this chapter, consideration is given to the effects of finite
rates of ionization and recombination due to convective nonequilibrium
on electrical conduction in a finitely segmented magnetohydrodynamic
charmel with nonequilibrium conductivity. The electron temperature is
assumed to be determined by a simple balance between Joulean heating
and collisional energy loss to the heavy species in the gas as discus-
sed in chapters 2 and 5. The electron number density, however, is gov-
erned by the more complete electron continuity equation discussed in
chapter 6. Detailed numerical solutions are obtained for the distribu-
tion of potential, current, electron temperature, and electron number
density. The results of this model are contrasted with those obtained
for the model discussed in chapter 5, in which the electrons were as-
sumed to be in ionization equilibrium at the local electron temperature.
A specific ecaleulation is made for the approximate conditions and geom-

etry of the experiment of Fischer.?8

It is shown that certain of Fis-
cher's measuremente are explainable in terms of a convective nonequilib-

rium effect.

7.1 Nondimensional Steady Equations

The nondimensional steady equations governing the potential %' or
flux function ¥, electron temperature T;, and number density Hé from

sections 3.2, 5.1, and 6.3 are
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Current Conservation and Maxwell-Faraday:

M@ = 0, M@ = 0, (7-1)

Electron Energy:

(7-2)
( B
= - w 2 2
T = T + J ¥ + ii
e =2 axr 3y ’
n
€ -
Electron Continuity:
_ a°n'e o _
Uu— = anl(n*2-72), (7-3)
- e e e
X
The operators ME, M} are defined as
= 32 32 — d - d
Mew T2 TR Ot 0w T e,y (7=

For uniform electron mobility u, the coefficients ak I FE J from Egs.
’ ’

(2-11) and (2-12) are

_ 9 n ne 9 in ne
B = —— B
ax 3y
(7-5)
3 ! n 3 mn

-
1}
|
w
-
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qJ = - + B ’
X oy
(7-6)
3 mn 3 mn
- e e
o= - - B —
9% 3y

Equations (7-1), (7-2), and (7-3) are three equations governing ¢' or
v, T; and n,. From section 4.3, This system of steady state equations
is parabolic, provided U # 0. From section 4.1, it was shown that the
electro-thermal wave instability may still occur even with finite rates
of ionization. The condition for the prevention of this instability

will be discussed in the example below.

7.2 Potential, Current, Electron Temperature, and Electron Number

Density Distributions

In ii|us+raTing the effects of finite rates of recombination in a
finitely segmented electrode channel, the energy exchange coefficient
8, electron mobility u, and gas state variables p,T,... will be assumed
uniform; the coefficient we is then constant. As a typical! case, let
we = 0.5 which corresponds to a slightly seeded cesium argon mixture at
one atmosphere pressure, T = 2400°K, mole seed fraction of 0.004, and
an effective field ot Vy’/h ~v 40 volts/meter. Geometrical parameters
are selected as 2/h = |, a/% = 0.5. Uniform mobility precludes static
instabilities of the form discussed in section 4.2. By selecting the

Hall parameter at B = | for these conditions, the electro-thermal wave

instability is prevented according to inequality (4-41). The extent of

the effect of finite rates of recombination is conftained in the nondimen-
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sicnal parameter u which represents the ratio of ionization time to resi-
dence time of an electron over the period length 2. As a typical value
illustrating finite rate effects, let u = |0.

The solution of Egs. (7-1) through (7-3) subject to the boundary
conditions (2-35), (2-36), and (2-37) or (2-38) are obtained numerically.
The potential, current, electron temperature, and electron number density
fieltds are shown in Figs. 7-1 through 7-4 for 7; = 0. Atffention should
be directed to the four singular points, one of which occurs at each
electrode edge as shown in Fig. 2-1. For the orientation of magnetic
field shown in Fig. 2-1, the Hall effect causes an intensification at
the singular points at the downstream edge of the lower electrode and
the upstream edge of the upper electrode. |In what follows, these inten-
sified singularities (or concentrations of current) are referred to as
the "strong" singularities.

The most significant aspect of the current distribution shown in
Fig. 7-1 is the loss of symmetry between the upper electrode~insulator
wall and the lower wall as a result of the finite rate effects. |t may
be noted that the strong singularity at the downstream edge of the lower
electrode is now stronger than that on the upstream edge of The upper
electrode. This fact may be verified by counting the number of current
lines entering the singular point in both cases. This distribution may
be contrasted with tThat shown in Fig. 5-1 for Saha equilibrium in which
the strong singularities on tThe upper and lower wall are equal.

The potential distribution shown in Fig. 7-2 reflects behavior that
may be interpreted in terms of the current distribution discussed above.
Lack of symmetry between upper and lower electrodes is manifest, the
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Fig. 7-3 Current distribution along electrode for the case

shown in Fig. 7-I
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potential drop at the lower electrode edge being greater than that at
the upper electrode edge.

The electron number density distribution shown in Fig. /-6 evidences
definite finite-rate effects. The electrons created near the "hot spots"
at the electrode-insulator intersections are convected downstream as seen
in the shift of the constant-number-density contours. It can be seen
that this shift in the electron number density does not produce a cor-
responding strong shift in the electron temperature field (Fig. 7-5).
Such a shift might be expected if the higher conductivity region attracts
a larger current to the downstream regions which in turn produces greater
Joulean heating in those regions, thereby producing higher electron tem-
peratures. The electron temperature contours, however, are not as
strongly displaced as the electron number density contours. This elec-
tron temperature field with finite rate effects may be contrasted with
the equilibrium temperature field shown in Fig. 5-5.

The effect of finite rates on the electrode current distribution is
shown in Fig. 7-3. |t can be seen that the lower electrode which is im-
mediately upstream of the strong singularity has a more nonuniform cur-
rent distribution than it possessed in the Saha equilibrium case of chap-
ter 5. This effect results because, on the lower eiectrode, the elec-
trons are convected downstream of the singularity directly onto the in-
sulator, thereby attracting more current fo the edge of the electrode.
The upper electrode on the other hand possesses a current distribution
(except near the strong upstream singularity) which is more uniform than
the Saha equilibrium case. This is so because, on the upper electrode,
the electrons generated at the strong upstream singularity are immediately
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convected onto the electrode. These eliectrons then generate a higher
conductivity over the electrode portion adjacent to the strong singular-
ity. This effect then tends to spread the current out in the regions
adjacent to the strong singularity. Since the overall effect of finite
rates is to generate a layer of high conductivity over the electrodes
and insulators, the region of the electrode near the strong singularity
still manifests strong current nonuniformity relative to the case with
Saha equilibrium. This follows from the results of chapter 3, where it
was shown that a high conductivity layer over the insulators and elec-
trodes produces a more nonuniform distribution of current on the elec-
trode. This convective effect therefore explains the shift in the rela-
tive strength of the singularities of the upper and lower electrode
walls discussed above.

The distribution of potential &' on the insulator is shown in Fig.
7-4. Although the potential rises more rapidly than for the Saha equi-
librium case, the overall rise along the insulator is less than that for

Saha equilibrium.

7.3 Internal Impedance and Hall Voltage

The internal impedance and Hal!l voltage for this case are shown in
Table 7.1, where the results for the Saha equilibrium calculation are
also shown for comparison. |t can be seen that the finite rate effect
produces a conducting layer over the insulator which does tend to re-
duce the Hall voltage relative to the Saha equilibrium case for this
value of U = 10. The interna! impedance has also been increased rela-

tive to the Saha equilibrium case as a result of the Hall shorting effect
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TABLE 7.1

CONDUCT IV i TY MODEL Ry 2 R /R _(0) V=V '/v !
T 7y yy H s
ideal
Uniform Conductivity at o, 1.60 0.45
Nonequilibrium Conductivity 0.15 0.36

with Saha Equilibrium
Nonequilibrium Conductivity 0.22 0.32
with Finite Rates

E} = 20, R =1, we = 0.5, L/h =1, a/2 = 0.5

7.4 Comparison with the Measurements of Fischer

It was pointed out in chapter 6 that the distribution of radiation
intensity measured by Fischer28 could be explained as a convective non-
equilibrium effect. A calculation using conditions similar to those of

Fischer's experiment is now described. The conditions of the potassium

seeded argon flow for which a comparison will be attempted are
T = 2100°K
u = 135 m/sec
g = 1.2 cm

n n 2x1016cm—3
So

h = 2.0 cm

a/e = 0.5
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From appendix C, the reference recombination frequency Vr corresponding
to this condition is about 103 sec™!, The nondimensional parameter

U = u/JLvr is therefore approximately 10. The applied magnetic field for
this case was 0.25 Tesla. Based on the gas composition data available,
the Hall parameter B was approximately 3. For these low degrees of ioni-
zation and the cross section behavior of potassium and argon, static in-
stabilities discussed in section 4.3 will not arise. From section 4.1
it was shown that even with finite rate effects, the electro-thermal

wave instability may still occur and that the onset of this instability
is still governed by the inequality (4=39). {f a uniform mobility is

assumed, the condition (4-39) for the prevention of the electro-thermal

wave instability is 8 ¥ 0.8 (¢, 23 for the above data). Because of

i
the assumption of uniform mobility, this condition is probably overly
conservative; nevertheless, it appears that the conditions of Fischer's
experiment corresponded closely to those for the onsef of the electro-
thermal wave instability.

For the comparison with the above experiment, the nondimensional
gas properties were set at E} = 20, wg = 0.5. The geomefrical parame-
ters were set at 2/h = 0.6, a/% = 0.5. The convective nonequilibrium
parameter u was set at 10.0. The current, potential, electron number
density and electron temperature distributions for this calculation are
shown in Figs. 7-7 through 7-10 and possess the same general trends as
those discussed previously. |1 should be nofed that the lack of sym-
metry between the upper and lower electrode walls discussed previously

is clearly evident in the electron temperafure and number density dis-

tributions. The intense singularity occurs on the lower wall, and a
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considerably weaker singularity occurs on the upper wall. Further in-
sight info this convective nonequilibrium effect may be obtained with
reference to Fig. 7-11. In the absence of significant convection ef-
fects, the "hot spots'" generated at opposite electrode edges as a re-
sult of the Hall effect would be expected to develop regions of high
temperature and electron number density which extend equally in both
the upstream and downstream directions. A fraverse along the dashed
line shown in Fig. 7-1| would then reveal a symmetric variation in
either temperature or number density across the channeil. On the other
hand, in the presence of gas dynamic convection, the distributions in
number density and temperature tend to become distorted in the down-
stream direction and the fraverse along the dashed line no longer re-
veals a symmetric distribution. The results of the calculation in terms
of number density and temperature along the dashed line shown in Fig.
7-11 are shown in Fig. 7-12. These results are compared with Fischer's
measurements (in terms of the photomultiplier tube signal of the radia-
tion infensity). |t may be noted that a reversal of the magnetic field
reverses the direction of the anti-symmetry. |t can be seen that, al-
though the distortion of the intensity is much sharper for Fischer's
measurements, the trends in number density and temperature in the cal-
culation are similar. Note that the number density shows a sharper vari-

ation than does the electron temperature.
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WITHOUT CONVECTIVE NONEQUILIBRIUM
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|

Fig. 7-11 Convective nonequilibrium effects in a finitely

segmented MHD channel.
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nonuniform conductivity on electrical conduction in magnetohydrodynamic
channels. Two basic models have been proposed which exhibit such effects.
The first model requires as input information the spatial distribution

of conductivity throughout the channel. The second model incorporates
the effects of electron fluid heating and electron ionization and recom-
bination on the conductivity distribution in a self-consistent calcula-
tion.

Studies made with the first model have shown that low conductivity
layers over the electrodes and insulators in the presence of a strong
magnetic field have two important effects on the current distribution
relative to the uniform conductivity case. The first effect is a
straightening of the current lines in the core of the channel such that
the current tends to flow vertically across the channe!l from electrode
to electrode. The second effect is a more uniform distribution of cur-
rent on the electrode relative to the uniform conductivity case. This
uniformity effect was shown to be consistent with the experimental meas-
urements of Hoffman and Oates.2? When layers of high conductivity over
the electrodes and insulators were examined with the same model, it was
shown that the current in the core tends to flow at the Hall angle. For
large Hall parameters, the current flows nearly parallel to the channel
axis in the core. In addition, the current distribution on the efectrode
becomes increasingly more nonuniform relative to the case with uniform

conductivity.
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Studies made with the second mode!l described above revealed the ex-
istence of an ionization instability. This instability had previously
been predicted by Kerrebrock.?2 A detailed examination of the effects
of finite rates of ionization on this instability revealed that the con-
dition for the onset of the instability is unchanged from that with in-
finitely fast ionization. 1+ was also shown that in the absence of pres-
sure gradient induced diffusion of charge and electronic heat conduction,
the growth rate of the instability was proportional to the longer of ei-
ther the effective ionization time of electrons or the effective colli-
sional energy transfer time from the electron fluid. This model under
steady state conditions was also shown to be described by a system of
equations of mixed type if the ionization was in equilibrium at the lo-
cal electron temperature. |1 was shown that if the Hall parameter is
small enough, the equations of this model will always be uniformly ellip-
tic. Further, in the absence of pressure gradient induced diffusion and
heat conduction, it was shown that the condition for uniform ellipticity
of these steady equations is identical to the condition for the preven-
tion of the ionization instability described previously.

Numerical studies made with the steady state form of the second
model were carried out for Hall parameters such that the equations were
uniformly elliptic. When the jonization was in equilibrium at the local
electron temperature, it was shown that the more intense electron heat-
ing at the electrode edges tends to reduce the Hall potential. This ef-
fect occurs because of an enhanced conductivity which occurs in this re-
gion of high electron temperature. When the electrons were allowed to
be driven out of ionization equilibrium by gas dynamic convection and

finite rates, it was shown that the current concentrations on one of the
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electrode walls became less intense whiie on the opposite electrcde wall
the current concentrations became more intense. These effects were also
shown to be consistent with the experimentai measurements of Fi
in general it was shown that all types of conductivity nonuniformi-
ties considered led to a degradation of performance of MHD generator
channels as reflected in increased infternal impedance of the conducting
gas and depressed Hall voltage. Although several important effects of
the nonuniform conductivity have been exhibited and contrasted with the
limited experimental data available, it is clear that much more remains
to be understood. Perhaps the foremost among these is the ionization
instabiiity in a strong magnetic field. As was pointed out in chapter
4, MHD devices which are expected to operate with large Hall parameters
and a nonequilibrium conductivity will most |ikely be subject to such
instabilities. The steady state theory of chapters 5 and 7 is not ap-
plicable in such cases (being restricted fo 8 ¢ 1), and a proper formu-
lation of a quasi-steady theory of such effects does not now exist.
Experimental data on such instabilities is also quite limited. Rigorous
design procedures for the performance of nonequilibrium MHD devices can-

not be established until further progress is made in these areas.
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APPENDIX A

NUMERICAL SCOLUTION OF THE EQUATIONS GOVERNING
ELECTRICAL CONDUCTION IN NONUN!IFORM MEDIA

A.l Differential Equations and Boundary Conditions

It was shown in chapters 2 and 4 that the potential ¢' and flux
function ¢ in a medium characterized by either a mode! conductivity non-
uniformity or by a nonequilibrium conductivity were governed by the

differential equation

L(¢) = 0, (A-1)
where
_ 32 32 32 3 3
L = A3x2 + ZBW + CWZ— + Dg; + E'a—y-. (A=-2)

In the above, ¢ represents either the potential &' or the flux function
¢y, and the A, B, C, D, E are general coefficients which are functions of
X, y, 9¢/3x, and 9¢/3y. As described in chapters 2 and 4, these coef-
ficients are different for ¢' and ¥. In what follows, however, both
cases will be treated by considering the general operator L. |In addi-
tion, it will be assumed that all variables have been nondimensional-
ized as discussed in chapters 3, 5, and 7. In what follows, this non-
dimensionalization will not be explicitly denoted by the bar notation.
The boundary conditions appropriate to the differential equation (A-1)

were shown To be of the form
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constant on insulating (conducting) surfaces

(A=3)
-a—ﬂ-#néi—

s n = 0 on conducting (insulating) surfaces
y ax I - =
parallel to the x axis

where n = %8,

A.2 Formulation of Difference Equations

The development of difference equations for the differential equa-
tions (A-1) and (A-3) will now be described. For this purpose, let a
square lattice of mesh width § > O be defined for the coordinate system
shown in Fig. 2-1 by the nodes x = m§, y = n6, wherem = 0, |, *2, .3
n=0,1,2, .... The notation ¢(m,n) wilj be used to indicafe the func-
tion ¢ at the point x,y whose discrete coordinates are m,n. The deriva-
tives appearing in the operator (A-2) may be calculated from the expan-
sion of ¢(x,y) abou+ the point x;y whose discrete coordinates are m,n.

This procedure yields the following expressions for 32¢/9x2, 32¢/03y2,

32¢/9x3dy, 3¢/dx, 9¢p/ay:34,36

3% ¢(m+l,n) + ¢(m=1,n) - 2¢(m,n)

—% - =7 + 0(82), (A-4)
2 -1 -
%;%_ = 9(m,n+l) + ¢(m32 I) 2¢(m,n) r 0082y, (A=5)
2 -l.n=1) - -1) - -
gxgy _ ¢(mtl,n+l) + ¢(m=-1,n=1) 4{Sg(mﬂ,n 1) = ¢m=t,n+1) 0(82), (A=6)

3¢ _ o¢(mtl,n) - ¢(m=1,n)
ox 26

+ 0(62), (A-7)
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3 _ ¢m,n+l) - $(m,n~1)
3\/ - 28

+ 0082y, (A-8)

It is also possible to express 3¢/3y as an off-center difference correct

to order §2 as??

- n + i
%g_ = 4 3¢(m,n) 4¢(mép+J) $(m,nz2) + 0(82). (A-9)
y 8
In terms of these finite difference approximations, the differen-
tial equation (A-|) becomes

Av¢(m+|,n) + ¢(m=-1,n) - 2¢(m,n)

57 +

B p(mti,n+ti) + ¢(m=I,n=1) = ¢(m+l,n=1) - d(m=1,n+1)

+ 2 752 +
+ C ¢(m,n+l) + ¢(m,n=1) - 2¢(m,n) + D ¢(m+l,n) = ¢(m=1,n) +
§2 28
yog dmntD) - omn=l) y 5s2) = 0. (A-10)

28

Rearranging the above, there results for all m,n fo which the differen-

tial equation (A-1) applies,

r(m,n) = ¢(m,n) - {a+,o¢(m+l,n) +oa_ elmeln) 4 oag e(mntl) 4
+ ao'_¢(m,n—|) + ylo(m+l,n+1) = ¢(m+l,n=1) = ¢(m=I,n+l) +

+ ¢(m-1,n-J} = 0, (A=11)
where
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~a n

o = (A + D&/2)/2(A + C), «

(A - D8/2)/2(A + C),

+,0 -,0
o, = (C+E&/2/2(A+0C), a _ = (C-E§2/2(A+0C),
2 % (A=12)
Y = B/4(A + C),

and r{m,n) is the residual at the point m,n. The derivatives appearing
in A,B,C as given by Egs. (4-74) and (4-79) may be calculated according
to the finite difference approximations (A-7) and (A-8).

Since the second of the boundary conditions (A-3) is applied on the
boundaries y = 0,1, the introduction of exterior points into the mesh
may be avoided by using the off-center difference approximation (A-9)

to 3¢/3y. Thus, for all m,n on the boundary y = 0,

3¢ _  _ 3¢(m,n) - 4¢(m,ntl) + ¢(m,n+2) 2 _

Iy 55 + 0084). (A=-13)
For all m,n on the boundary y = |,

3¢ _ 3¢(m,n) - 4¢(m,n-1) + é(m,n-2) +0(82) (A-14)

oy 28 )

It may be observed that the difference approximations (A-13) and (A-14)
do not involve points external to the boundaries y = 0,1. The deriva-
tive 9¢/3x is calculated according to (A-7). Substituting the finite
difference forms (A-7), (A-13), or (A-14) into the boundary condition

(A-3), there results

For m,n on the boundary y = O,fo which the condition (A-3) applies,
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Fm,n) = g(m,n) - 3 {48(m,n¢l) = o(m,n+2) -

- nlé(m+l,n) - ¢(m-1,m1} = o. (A-15)
For m,n on the boundary y=l, to which the condition (A-3) applies,

rim,n) = ¢(m,n) - %-{4¢(m,n—l) - ¢(m,n-2) -

- nl¢(m+1,n) - ¢(m-1,m7} = oO. (A-16)

A.3 Iterative Methods of Solution

For all cases considered in this work, the difference equations
(A-11), (A-15), and (A-16) were solved using iterative relaxation3“,37

according to the algorithm

(

P = 6P lmm - wrPlm,m. (A=17)

¢

The superscript p denotes the pID-iTeraTe and w > 0 is the relaxation
parameter. Every point in the mesh is first set with an initial value.
Each point is then corrected according to the algorithm (A-17) in a
specified and regular order. The process is continued until the resid-
ual r(m,n) at each point has been reduced to a small, predetermined
value.

For all cases for which convergence was achieved, the operator L

was uniformly elliptic so that

B2 - AC < O. (A-18)
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in addition, for those cases where

function of space, the A,B,C,D,E were independent of 3¢/9x and 3¢/3y, so
fhat the operator L was linear. A rigorous guarantee of the convergence
of the algorithm (A-17) to the solution of the differential equation
(A-1) exists for this case with modest restrictions on the behavior of

¢ and the discrete form of the operator L.3% In particular, it is re-

quired that the mesh size & be smail enough so that o o

1 b4
+,0 -,0

’ o!+’

ao,— defined by Eqs. (A-12) are each always less than one. These cri-
teria were satisfied by mesh refinement in those regions where the con-
ductivity gradients were large leading to large D,E. These refined mesh
regions were joined to the coarse mesh using simple linear interpolation.
A systematic study of convergence rates and optimal relaxation pa-
rameters was not performed in the present work; however, a |imited
amount of experience has been obtained and is now described. For those
cases in which the conductivity was specified as a function of space as
discussed in chapter 3, a refined mesh was utilized between the lines
y=0,.2 and y=.8,1. Typical mesh sizes for the conductivity distribu-
tions discussed in chapter 3 were of the order of 50 mesh points in the
x direction by 10 mesh points in the y direction in the refined mesh re-
gions; in the core region the mesh size was of the order of 10 by 10
mesh points. For these typical sizes, the number of iterations required
to reduce the residuals to less than .0l varied from 20 fo 200, depend-
ing upon the initial guess. |In general, it was found that cases with
regions of high conductivity near the electrodes and insulaforsvrequired

more iterations to converge than did those cases with low conductivity

regions. Relaxation parameters for these calculations of | < w < |.3
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were found to yield satisfactory convergence rates. |t was found that
w v |.6 was near optimal for the case when the conductivity was uniform.
With a nonuniform conductivity, the optimal w was found to decrease.

The order in which the points were visited by the relaxation al-
gorithm (A-17) was found fo influence the rate of convergence. The most
rapid rate of convergence was achieved when the effects of the boundary
conditions were integrated into the mesh as rapidly as possible. This
was achieved by sweeping upward through the refined mesh adjacent to the
boundary y=0. The core mesh was then swept up to the match line y=.8.
The refined mesh adjacent to the boundary y=1 was then swept downward
from the boundary. Typical times for all cases in which the conductiv-
ity was specified as a function of space were of fthe order of one to
five minutes on the IMB 7090 for total mesh sizes ranging from 200 to
1400 points.

When a nonequilibrium conductivity is considered, the operator L
is quasi-linear and non-symmetric (because of the Hall effect). A rig-
orous theory of convergence for quasi-linear elliptic operators accor-
ding to the algorithm (A-17) exists;3° however, there is no criterion
for the convergence of the algorithm (A-17) for nonsymmetric operators.
Nevertheless, it was found that convergence could be achieved for all
cases provided that L was uniformly elliptic. As an experiment, the
Hall parameter was made large enough so that the operator L was no
longer uniformly elliptic (c.f. section 4.3). Rapid divergence quickly
occurred when the relaxation algorithm (A-17) was used for this case.

In some cases (those close to the limit of uniform ellipticity), it was

found that under-relaxation (w < |) improved the rate of convergence.
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or such cases invoived w of the: order of .Z.

Typical mesh sizes of the cases in which a nonequilibrium conduc=

H H ool
as discussed in chapd

er 5 were 20x20 mesh points. De-
pending upon the initial guess, the number of iterations required to
reduce the residuals to less than .0l varied from 20 to 150. These it-

erations required between | and 4 minutes on the [BM 7090.

A.4 Strong Hall Effects

When the Hall parame}er B is large, the large factor n = %8 in the
difference equations for the boundary conditions (A-i4) and (A-15) may
be expected to give rise to numerical instabilities; indeed, these dif-
ference equations were found to lead to instabilities for Hall parameters
greater than two. Stable difference equations for these boundary condi-
tions may be developed in the following way. The derivative 3¢/3x on the
boundary is expressed in finite difference form as an off-center differ-
ence similar to (A-9):

9 _ , 3¢(myn) - 4¢(mxl,n) + ¢(mF2,n)

2 -
= = 53 + 0(89). (A-19)

On the boundary y=0, the condition (A-3) in terms of the finite differ-

ence approximations (A-13) and (A-19) becomes

r(m,n) = ¢(m,n) -

Fnl-4¢(m3l,n) - ¢(m32,n)] = 4¢(m,n+1) + ¢(m,n+2)
3(-1 £t n)

= 0. (A-20)
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The presence of (-l ¢t n) in the denominator of this difference expres-
sion has a stabilizing effect for large n [compare with the difference
formula (A-15)]., When ¢ = ¢, i.e., the calculation is in the current
representation, n = -8 B > 0, and the upper sign is selected in Eq.
(A=20) so that the denominator (-] * n) is always negative and less than
- 1. Conversely, when ¢ = &', i.e., The calculation is in the field
representation, n = 8, 8 > 0, and the lower sign is selected in Eq.
(A-20).

On the boundary y=I1, the condition (A-3) in terms of the finite

difference approximations (A-14) and (A-19) becomes

r(m,n) = ¢(m,n) -

T nl=4¢(ml,n) + ¢(mx2,n)] + 4¢(m,n-1) = ¢(m,n=2)
3(1 £+ n)

= 0. (A=21)

The positivity or negativity of n again dictates the choice of sign in
Eq. (A-21) so that the denominator (I * n) in absolute value is always
greater than unity.

The difference approximations (A-20) and (A-21) were used for Hall
parameters as high as B = 6 with no difficulty and no evidence of numer-

ical instability.

A.5 Finite Rate Effects

For those cases where finite rates of ionization and recombination
were present as discussed in chapter 7, the governing equations were nu-

merically treated as a system consisting of (A-2) with A=C=l, B=0,
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supplemented by the electron continuity and energy equations. From Egs.

(7-5) for B uniform,

) ne 3 n Ne
R e VA
(A-22)
9 m n 3 An n
E:.__—e—B——_e_
3y X )
The electron energy equation was shown to be
= 2 -
Te T + wE(V¢) . (A-23)

The solution of the electron continuity equation with finite rates [chap-

ter 6; appendices C,D] is

-1
| [ RN H 2
ng = T Fe0 o+ - =try7g FOD) . (A=24)
l t i - e j}
where
X 2
= *
Ax) = 2 £ a[Te(n)]ne [Te(n)]dn,
X “IA(x) = A ]
PO = 2 [ ofT (e dn.

0

It should again be noted that the variables appearing in the foregoing
equations are assumed to be in the nondimensional form discussed in

chapters 5 and 6. |In section 4.3 it was shown that this system is para-
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bolic; however, ¢, Te’ and ng are noniinearly coupled. The solution of
this system is obtained by using the algorithm (A-17). After all ¢(m,n)
are operated on according to (A-17), the temperature Te is calculated at
each point in the mesh according to (A~23). The number density Ng and
the number density gradients appearing in D,E of Egs.(A-22) are then
calcuiated from (A-24) by numerically performing the quadrature. The
relaxation algorithm (A-17) is then repeated until the cycle converges.

The above method was used in obtaining the finifte rate solutions
discussed in chapter 7. |In all cases where the criterion for stability
of the nonsteady equations was obeyed as discussed in section 4.1, con-
vergence was achieved. As an experiment, this stability condition was
violated by increasing the Hall parameter, and it was found that the cal-
cuiation rapidiy diverged. |1t is important to nofe that this stability
condition is a physical stability condition, not a numerical stability
condition. Nevertheless, it appeared to contro!l the condition of numer-
ical convergence for the steady equations where a relaxation algorithm
was used. |t should also be noted that the steady equations become of
mixed type when the stability condition is violated as discussed in sec-
tion 4.3, 1t was pointed out in appendix A.3 that convergence was also
not achieved when the steady equations became of mixed type.

Relaxation parameters of w ~ | were found to give satisfactory re-
sults except when conditions were close to the stability limit mentioned
above, and the convective effect in Eq. (A-24) was not strong (u < 5).
Under-relaxation (w ¥ .2) was required 1o achieve convergence in this

case.
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A.6 Solution of the Coupled Saha and Electron Energy Equations

In chapter 5 it was shown that in the current representation the
electron temperature Te and electron number density n, were governed by

the electron energy and Saha equations respectively:

- 2/n 2 -
T, T + w (W)?2/n2, (A-25)
-1
N, = 2f , (A-26)
I+ /i + 4/c(Te)

where f was the degree of initial ionization and

3
= 7 - -
C(Te) = n°Te exp( Ei/Te)' (A=27)

The variables Te’ ne are transcendental ly coupled in these two equations
prohibiting an explicit solution for Te’ Ne for a given T, vy, f, w,
ne,, and €;e Newton-Raphson iteration38 was therefore used to solve this

system. The energy equation (A-25) was expressed as
= - - 2/n 2
r(Te,ne) = T T wJ(Vw) /ne ,

e

and the iterative algorithm for the Kiﬁ iterate of Te’ denoted Te(k), was

(k)
& (A-28)

Using the energy equation (A-25), it follows that
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3 n n

or _ o1y e _
ﬁe— = | + (Te D X , (A-29)

and 3 n ne/BTe is given by Eq. (5-13). From Egs. (A-29) and (5-13),
all terms in the Newton algorithm (A-28) may be expressed in terms of
Te‘ It was found that using the initial guess Te(l) = T, convergence

to r < .0! could be achieved in three to four jterations for typical

values of the parameters appearing in (A-i) and (A-2) discussed in chap-

Ter 5.
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APPENDIX B

DISSIPATION AND UNIQUENESS THEOREMS
FOR A NONUNIFORM CONDUCTING MEDIUM

B.1 Integral Theorems for a Nonuniform Conducting Medium

Consider potential function ¢’ and current I defined in a planar

domain D with boundary curve C governed by the equations
v-l = o, T = -Gever, (B-1)

where @ is defined by Eq. (2-4). In what follows it is assumed that
the conductivity tensor G’may be nonuniform but is a given function of
space at each point within D. |f the divergence of the product ¢'T is

integrated over D, there results

JD'IV-W'T)dA = JD'I(¢’V-T+ Jevo')da. (8=2)

Using the divergence theorem33 and Eq. (B-1), the above result becomes

gI-vwdA = éw:r.;ds, (B-3)

where K is the outward drawn unit normal. From (B-1) and the definition
oflgt Eq. (B-3) may be expressed as

J2 "2 = - 1T (B-4)
by - 6IOB(V¢ ) g0 J7 ds,

where ¢ and og are defined following Eq. (2-4). In similar fashion, if

Eq. (B-1) is integrated over D and the divergence theorem applied, there
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results

fv-lda = $Jnds = o. (B-5)
D C
The domain D wil! now be selected as one period of the periodic

electrode MHD channel described in section 2.3 (Fig. 2.1). The inte-

grals over the boundary curve C in (B-4) and (B-5) for this domain are

5 h
- ¢'(0,0) j,Jy(x,O)dx + [ ez, (/2,y)dy +
a 0

[okh-a)
o
—y

.
pm |
[a®
)

I

(B-6)
> h
+ ¢'(0,h) [ Jy(x,h)dx - [ e'(-0/2,y)0 (-8/2,y)dy,
a 0
"z
a
> T h
é Tomds = = 70 (x,00dx + [ J_(2/2,y)dy +
a Y o *
T
(B-7)
2- h
+ 3y Oxmdx - [ 4 (=2/2,y)dy.
2 0
2

In developing (B-6) and (B-7) it has been assumed that ¢’ is constant on
the conducting surfaces and that J+n vanishes on insulating surfaces.
From the periodicity of J over the period 2, J (-2/2,y) = J (2/2,y) for

all y. Equation (B-7) thus implies
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f 4, 0%, 000

f J, (s haax, (B-8)

2 2

i.e., the periodicity of total current flow in the axial direction re-
quires that all current leaving the electrode on y = 0 must enter the
electrode on y = h. Equation (B-6) thus becomes

> >
J

*nds = -IVv' - IV' (B-9)
X X

4
é ’ y'y’

where the global currents Ix’ Iy’ and the voltages Vx', Vy’ are defined

as (Note that periodicity of Vo' makes V ' independent of y.)

h
I o= - g 4, (2/2,y)dy,
2
_ 2
I = - f J (x,0)dx,
Y a v
2 (B~10)
VX' = @' (8/2,y) - o'(-2/2,y),
v' = ¢'(0,h) - @7(0,0).
Y
B.2 Power Dissipation
Substituting from Eq. (B-9) into Eq. (B-4) there results
INV.' + IN ' = [fo,(Ve')2dA. (B=-t1)
X X Yy D B

Equation (B-11) may be viewed as a theorem relating to the power dissi-
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pation in a nonuniform conducting medium. The local rate of power dis-
sipation per unit volume in a conducting medium described by the conduc-
tivity tensor (2-4) may be readily shown to be3? -J.ve’ = oB(Vcb')2 and
is an inherently positive quantity. Equation (B-11) thus states that
the total power dissipated per unit channel depth is equal to the sum of
the products of the axial current and voltage and the fransverse current
and voltage. In terms of the impedance tensor R defined in section 2.3,
the power dissipation may be expressed as

éch(VCD')ZdA = IXZRXX + IyzRyy + IXIy(ny + Ryx). (B-12)
The elements of R thus represent the internal impedance of the conduc-
ting medium. Equation (B-11) will serve as a basis for the uniqueness

theorems to be discussed below.

B.3 Uniqueness Theorems

Consider that two solutions &;', ®,' exist to the differential
equation (B-1) satisfying certain boundary conditions to be discussed
below. The difference function ¢ = &' - ¢’ implies the existence of

a current difference function j defined as j = Tl - jz where
I, = -Gveyr, T, = -Gewve,r. (B-13)
The function ¢ satisfies the differential equation
v-(g-ve) = O. (B-14)

In terms of the functions ¢, 3, the quantities Vi Vy’ ix’ iy may be
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Q)
n

vy = 6(2/2,y) - ¢(-2/2,y),
vy = ¢(0,h) - ¢(0,0),
h (B-15)
i, = - g Jx(2/2,y)dy,
a
o= jr' (x,0)d
= - X.
y ! Jy ’

As was shown in section B.2, the difference function ¢, by virtue

of satisfying Eq. (B-14), must satisfy the dissipation theorem
éfce(vcb)z = vl v i (B-16)

The possible sets of boundary conditions which may be applied to ¢' and
which lead to a unique distribution of Ve’ and J within D may now be
discussed using Eq. (B-16). |If the identical boundary conditions ap-
plied to the two possibly different functions &', ¢,' are the specifi-
cation of Vx’ and Vy’, it follows from the first and second of Egs.
(B-15) that Ve = vy = 0. Since the integrand in Eq. (B-16) is inherentiy
positive, the only ¢ satisfying (B-16) is V¢ = O, which implies j = 0.
Thus, it follows that v&;' = V&, and J; = J, within D. The specifica-

tion of V; and V; thus leads to a unique distribution of field vé' and

153




and current J within D. In similar fashion, it is readily shown that

the specification of pairs of the global voltages and currents such as
(Vx',Iy), (Vy’,Ix), (Ix’Iy) also lead fo unique distributions of field
and current within D.
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APPENDIX C

IONIZATION AND RECOMBINATION RATES

iN ALKALI METAL PLASMAS

The frequency of recombination collisions in an ionized gas may be

expressed as

v = an_2, (C-1)

where a Is the recombination coefficient and e is the number density of
electrons. From the principle of detailed balance, the ionization fre-

quency due to electron-neutral impacts is

Vi = v = a ne*z, (C-2)

where ne*(Te) is the equilibrium number density of electrons. For alkali
metals such as cesium or potassium, the equilibrium number density is

given by

Njw

21rmekTe
n*¥2 = (n_ - n *)|————= expl-e./kT_).
3 S 2 | e

The quantities v and v, are thus known in terms of the recombination

coefficient a.

For temperatures in the range kTe/e % 0.25 electron volts, Hinnov

and Hirschberg?* have calculated a(T)) to be (in units of cm® sec™!)

2
-2

kT,
alT) = 5.6x10727 - (C-3)
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where (kTe/e) is the electron temperature expressed in electron volts.
The three body recombination coefficient V. for potassium has been cal-
culated according to the above expressions and is shown as a function
of Ne and Te in Fig. C-1. Also shown are lines of equilibrium number

density for various values of the ionizable species number density ng
=}
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APPENDIX D

SOLUTION OF THE ELECTRON CONTINUITY EQUATION
WITH [ONIZATION AND RECOMBI|NATION

D.! Transformation of the Nonlinear Rate Equation fo a Linear Form

The electron continuity equation discussed in chapter 6 was shown

to be

U—= = vy.n_ - an 3. (D-1)
e

This nonlinear first order differential equation is of the Bernoulli

type and may be transformed into a |inear equation with the substitution

-
= 2
ne 4 .
The result of such a fransformation is
dg - _
u B(— + ZVIC Za, (D-2)

which is linear in g.

D.2 Asymptotic Solutions with Periodic Disturbances

Equation (D-2) may be expressed as

dz _ -
=t YT = f00. (D-3)

The solution to (D-3) is readily shown to be
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X
L) = Lo + [ £t Elgg] o) (D-4)
1]

where
X
Ax) = [ y(g) dE. (D-5)
0
The quantity X(x) represents an effective decay length. |f the disturb-

ances which lead fo finite rate effects in ¢ are periodic and ¢ is the

length of the period, the coefficients y(x), f(x) are periodic in 2:

i

Y{x+NL) yix),
(D-6)

f(x+NgQ)

fix),

where N is an integer. From (D-5) and the periodicity of y(x), it fol-

lows that A(x) has the property
Ax+Ng) = Na(R) + A(x). (D=7)

The solution of Eq. (D-4) consists of ftwo parts: an initial distribu-

tion £(0) which decays exponentially:

~A(x)

. = z(0) e (D-8)

and a forcing disturbance

A(E)

f(g) e

X
e de. (D-9)

z =
f 0
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The solution (D~9) is now examined for large values of x for which
the initial distribution £(0) has decayed to a very small value. The

coordinate change
x = Ng + x!

is introduced where x’ is measured from the beginning of the NIE period.

Using the property (D-7), the forced part of the solution (D-9) may then

be written as

- ' NR’ -
¢ (x") e gy HE) T N ey
0
N2+x !
v fegy (&) " NA(R)dg]. (D-10)
N©

Changing variables and using the periodicity property (D-6}, the above

result becomes

x| X N o _ L
xh = N r@t Pag ¢ [ ™YY ST
0 m= | 0

T -ma2) ¥ o
The sum z e may readily be calculated. It is of the form | z

m= | m= |
where z = e_x(z) < 1. This is a simpie geometrical progression. In the
Fimit N + o

’

-A(R)
e

T -m z
Yz "= = . (D-11)
- (D)

m= | (-2 - e X

For a large number of periods (N >> |) away from the entrance x=0, there
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results

ci + 0,
e-A(x')
&, +» F(x") + Fee) (D-12)
f ‘I'“_::ﬂ’f)'
where
X . =A(x)

I U RTGE &

0

It may readily be verified that o is indeed periodic and that

_ ) F(L) )
Cf(O) = Cf(l) = Doy (D-13)

| - e

D.3 Application to the Electron Continuity Equation

The general results derived above may now be applied to the electron
continuity equation with finite rates of ionization and recombination.
In the above notation y(x) = Zvi/u and f(x) = 2a/u, where v, = ane*z.
The asymptotic result (D-12) is then (where x is measured from the be-
ginning of a period far away from the channel entrance)

-A(x)

e
e F(x) + —l__—_eT}\T[TF(z) . (D-14)

3
I

where
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) x
A6 = = [an ¥ gg,

(D=15)
0
X =-A(x)
Flx) = <3 [ o e}‘(g)d£> © . (D-16)
u
0
tn the limit when u > 0, Eq. (D-14) yields the equilibrium result
n = n*
e e
in the timit when u + «, the frozen limit result is obtained:
= J %5 — (D=17)
e <an, 2>/<a> R
where
| £
00> = g [ £00 dx. (D-18)
0

The number density in the frozen limit is Thus ihe RMS average over the

period of fhe equilibrium number density weighled againsi the recombiing-

tion coefficient.
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